【摘要】誘導公式(三)一、學習目標1.通過本節(jié)內容的教學,使學生進一步理解和掌握四組正弦、余弦和正切的誘導公式,并能正確地運用這些公式進行任意角的正弦、余弦和正切值的求解、簡單三角函數式的化簡與三角恒等式的證明;2.通過公式的應用,培養(yǎng)學生的化歸思想,運算推理能力、分析問題和解決問題的能力;二、教學重點、難點重點:四組誘導公式及這四組誘導公式
2024-12-06 01:12
【摘要】誘導公式(一)一、學習目標1.通過本節(jié)內容的教學,使學生掌握?+?k2,-?角的正弦、余弦和正切的誘導公式及其探求思路,并能正確地運用這些公式進行任意角的正弦、余弦和正切值的求解、簡單三角函數式的化簡與三角恒等式的證明;2.通過公式的應用,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力;二、教學重點、
2024-11-26 16:46
【摘要】§三角函數的誘導公式(2)(課前預習案)班級:___姓名:________編寫:一、新知導學2???的誘導公式公式四cos()2???=sin()2???=tan()2???=2.α與2????
2024-12-05 23:50
【摘要】雙基達標?限時20分鐘?1.計算sin??????-π3的值為().A.-12C.32D.-32解析sin??????-π3=-sinπ3=-32.答案D2.計算sin2(π-α)-cos(π+α)cos(-α)+1的值是
【摘要】§(課前預習案)班級:___姓名:________編寫:一、新知導學sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-12-05 23:35
【摘要】第一章第2課時一、選擇題1.已知2sin(x+π2)=1,則cos(x+π)=()A.12B.-12C.32D.-32[答案]B[解析]∵2sin(x+π2)=2cosx=1,∴cosx=12.∴cos(x+π)=-cosx=-12.2.已知
【摘要】3.2.2半角公式一。學習要點:半角公式及其簡單應用。二。學習過程:復習:升冪公式:降冪公式:新課學習:1.半角公式2.萬能公式例1已知(3,4)????,4cos5??,求sin,cos,tan222???例2已知si
2024-11-26 16:43
【摘要】三角函數的誘導公式的教學設計一、指導思想與理論依據數學是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學科。因此,在教學中,不僅要使學生“知其然”而且要使學生“知其所以然”。所以在學生為主體,教師為主導的原則下,要充分揭示獲取知識和方法的思維過程。因此本節(jié)課我以建構主義的“創(chuàng)設問題情境——提出數學問題——嘗試解決問題——驗
【摘要】3.2.1倍角公式一。學習要點:二倍角公式及其簡單應用。二。學習過程:復習:和角公式.新課學習:sin2??cos2??tan2??升冪公式:降冪公式:例1、已知5sin2
【摘要】教學目標:能記住二倍角公式,會運用二倍角公式進行求值、化簡和證明,同時懂得這一公式在運用當中所起到的用途。培養(yǎng)觀察分析問題的能力,尋找數學規(guī)律的能力,同時注意滲透由一般到特殊的化歸的數學思想及問題轉化的數學思想。重點難點:記住二倍角公式,運用二倍角公式進行求值、化簡和證明;在運用當中如何正確恰當運用二倍角公式一、引入新課1、si
【摘要】撰稿教師:李麗麗自學目標1.理解向量的概念,掌握向量的二要素(長度、方向);2.能正確地表示向量,初步學會求向量的模長;3.注意向量的特點:可以平行移動學習重、難點:1.向量、相等向量、共線向量的概念;2.向量的幾何表示學習過程一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學(一)問題探
2024-12-05 23:47
【摘要】§向量的加法(課前預習案)班級:___姓名:________編寫:一、新知導學a,b在平面上任取一點A,作AB=,BC=,再作向量AC,則向量叫做a與b的和(或),記作,即a+b=AB+B
2024-12-05 23:46
【摘要】學習目標1、掌握向量的加法運算,并理解其幾何意義;2、會用向量加法的三角形法則和平行四邊形法則作兩個向量的和向量,培養(yǎng)數形結合解決問題的能力;一、※課前準備(預習教材80頁~83頁,找出疑惑之處)二、※新課導學:1,回答以下問題(1)某
2024-11-26 16:44
【摘要】§正弦函數的性質(課前預習案)班級:___姓名:________編寫:一、新知導學1.請根據正弦函數圖象sinyx?的定義域是______;值域是______;當x?______________時,maxy?____;當x=________________時,miny?
【摘要】§向量的概念(課前預習案)班級:___姓名:________編寫:一、新知導學1、我們把具有____和_____的量稱為向量。2、具有線段叫做,以A為始點,B為終點的有向線段記作_____,其長度(或模)記為__,長度為零的向量叫做_____,記作__,長度為1的向量叫做______3、向量可