【摘要】函數(shù)的概念與性質(zhì)1、函數(shù)的連續(xù)性2、函數(shù)的間斷點(diǎn)3、閉區(qū)間上連續(xù)函數(shù)的性質(zhì).,),,(000的增量稱(chēng)為自變量在點(diǎn)xxxxxUx??????.)(),()(0的增量相應(yīng)于稱(chēng)為函數(shù)xxfxfxfy????一、函數(shù)的連續(xù)性xy00xxx??0)(xfy?x?y?xy00xxx?
2024-11-25 12:21
【摘要】f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并畫(huà)出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(-2)=f(2)f(-1)=f(1)f(-x)=f(x)-xxf(-x)f(x)xy
2024-08-29 01:30
【摘要】奇偶性1.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx( ?。 .奇函數(shù) B.偶函數(shù) C.既奇又偶函數(shù) D.非奇非偶函數(shù)2.已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)椋踑-1,2a],則( ) A.,b=0 B.a(chǎn)=-1,b=0 C.a(chǎn)=1,b=0 D.a(chǎn)=3,b=0
2025-04-10 05:11
【摘要】函數(shù)的基本性質(zhì)——奇偶性云陽(yáng)中學(xué)高一備課組1.在初中學(xué)習(xí)的軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的定義是什么?復(fù)習(xí)回顧2.請(qǐng)分別畫(huà)出函數(shù)f(x)=x3與g(x)=x2的圖象.1.在初中學(xué)習(xí)的軸對(duì)稱(chēng)圖形和中心對(duì)稱(chēng)圖形的定義是什么?復(fù)習(xí)回顧1.奇函數(shù)、偶函數(shù)的定義講授新課
2025-01-01 01:48
【摘要】單元測(cè)試(2)一、選擇題:(每小題4,共40分)1.下列哪組中的兩個(gè)函數(shù)是同一函數(shù)()A.2()yx?與yx?B。33()yx?與yx?C.2yx?與2()yx?D。33yx?與
2024-12-11 12:23
【摘要】函數(shù)的奇偶性、映射一、選擇題:(每小題6分,共36分)。1.由下列命題:①偶函數(shù)的圖像一定和y軸相交;②奇函數(shù)圖像一定經(jīng)過(guò)原點(diǎn);③既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是????0fxxR??;④偶函數(shù)的圖像關(guān)于y軸對(duì)稱(chēng),奇函數(shù)的圖像關(guān)于原點(diǎn)對(duì)稱(chēng)。其中正確的是
【摘要】函數(shù)的奇偶性南京市三十九中學(xué)xyO如何用數(shù)學(xué)語(yǔ)言表述函數(shù)圖象關(guān)于y軸對(duì)稱(chēng)呢?y=f(x)函數(shù)圖象關(guān)于y軸對(duì)稱(chēng).1xyOyxOxO1yxyOy=f(x)A(x0,f(x0))點(diǎn)A關(guān)于y軸的對(duì)稱(chēng)點(diǎn)A’的坐標(biāo)是_
2024-11-25 15:06
【摘要】第十二課時(shí)函數(shù)的單調(diào)性和奇偶性【學(xué)習(xí)導(dǎo)航】學(xué)習(xí)要求:1、熟練掌握函數(shù)單調(diào)性,并理解復(fù)合函數(shù)的單調(diào)性問(wèn)題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學(xué)會(huì)對(duì)函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用?!揪浞独恳?、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對(duì)任意x,y∈R均為f(x)+f(y)=f(x+y),且當(dāng)x0時(shí),f(x)0,f(1)=-.(1
2025-06-13 23:22
【摘要】函數(shù)的奇偶性y=x2-xx當(dāng)x1=1,x2=--1時(shí),f(-1)=f(1)當(dāng)x1=2,x2=--2時(shí),f(-2)=f(2)對(duì)任意x,f(-x)=f(x)xy1?偶函數(shù)定義:如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x)。那么f(x)就叫偶函數(shù)。奇函數(shù)定義:如果對(duì)于
2024-11-26 13:34
【摘要】第一篇:高中數(shù)學(xué):《函數(shù)的奇偶性》教案(新人教B必修1) 函數(shù)的奇偶性學(xué)案 【預(yù)習(xí)要點(diǎn)及要求】; ;; ;?!局R(shí)再現(xiàn)】 : 2中心對(duì)稱(chēng)圖形:【概念探究】 1、畫(huà)出函數(shù)f(x)=x,與g...
2024-10-14 05:48
【摘要】第二章函數(shù)(奇偶性)1.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx( ?。 .奇函數(shù) B.偶函數(shù) C.既奇又偶函數(shù) D.非奇非偶函數(shù)2.已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)椋踑-1,2a],則( ?。 .,b=0 B.a(chǎn)=-1,b=0 C.a(chǎn)=1,b=0 D.
【摘要】xy0觀察下圖,思考并討論以下問(wèn)題:(1)這兩個(gè)函數(shù)圖象有什么共同特征嗎?(2)相應(yīng)的兩個(gè)函數(shù)值對(duì)應(yīng)表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)
2024-11-25 07:49
【摘要】2020年高中數(shù)學(xué)函數(shù)的奇偶性學(xué)案新人教B版必修1一、三維目標(biāo):知識(shí)與技能:使學(xué)生理解奇函數(shù)、偶函數(shù)的概念,學(xué)會(huì)運(yùn)用定義判斷函數(shù)的奇偶性。過(guò)程與方法:通過(guò)設(shè)置問(wèn)題情境培養(yǎng)學(xué)生判斷、推斷的能力。情感態(tài)度與價(jià)值觀:通過(guò)繪制和展示優(yōu)美的函數(shù)圖象來(lái)陶冶學(xué)生的情操.通過(guò)組織學(xué)生分組討論,培養(yǎng)學(xué)生主動(dòng)交流的合作精神,使學(xué)生學(xué)
2024-11-27 19:27
【摘要】數(shù)學(xué)高中數(shù)學(xué)必修1第二章函數(shù)單調(diào)性和奇偶性專(zhuān)項(xiàng)練習(xí)一、函數(shù)單調(diào)性相關(guān)練習(xí)題1、(1)函數(shù),{0,1,2,4}的最大值為_(kāi)____.(2)函數(shù)在區(qū)間[1,5]上的最大值為_(kāi)____,最小值為_(kāi)____.2、利用單調(diào)性的定義證明函數(shù)在(-∞,0)上是增函數(shù).3、判斷函數(shù)在(-1,+∞)上的單調(diào)性,并給予證明.4、畫(huà)出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間.5、已
2025-06-28 01:09
2024-11-27 23:24