【正文】
uchthat $\overline{\Omega} = \bigcup_{k=1,\cdots,M}\overline{\Omega}_{k}$, $\Omega_{k_{1}} \cap \Omega_{k_{2}} =\emptyset$ when $k_{1} \neq k_{2}$,and $A_{ij}(x) \in W^{1,\infty}(\Omega_{k}) \cap H^2(\Omega_k)$.注意: 每一節(jié)的標(biāo)號自動(dòng)按先后順序生成文章第二節(jié)\section{Preliminaries}Let $T^{h} = \{\tau \}$ consist of shaperegular simplices of$\Omega$ with meshsize function $h(x)$ whose value is the diameter$h_{\tau}$ of the elements $\tau$ containing $x$. For any $G \subset\Omega$, set\[ h_{G} = \max_{x \in G} h(x),\]which is the (largest) mesh size of $ \left. T^{h} \right|_{G}$.參考文獻(xiàn)\begin{thebibliography}{99}\bibitem{ad} {\sc R.~A. Adams},{\em Sobolev Spaces}, Academic Press, New York, 1975.\bibitem{ao1} {\sc M.~Ainsworth and J.~T. Oden},{\em A posteriori error estimates in finite element analysis},Comput. Methods Appl. Mech. Engrg., 142 (1997), pp.~188.\bibitem{ao2} {\sc M.~Ainsworth and J.~T. Oden},{\em A Posterior Error Estimation in Finite Element Analysis},Wiley, 2000.\end{thebibliography}附錄\begin{appendix}寫在此后的所有內(nèi)容都不起作用\end{appendix}\end{document}注意:可以用\tableofcontents 生成目錄。 {\rm ~in~} \Omega, \\[1ex] \| u \|_{0,\Omega} amp。=amp。Latex 講義我們簡要講述如何用Latex排版論文及書籍.相關(guān)資源: