freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學總復習資料(備考大全)-文庫吧資料

2025-08-10 23:34本頁面
  

【正文】 周角、平角、直角的關(guān)系是: l周角=2平角=4直角=360176。 八、角的分類: (1)銳角:小于直角的角叫做銳角 (2)直角:平角的一半叫做直角 (3)鈍角:大于直角而小于平角的角 (4)平角:把一條射線,繞著它的端點順著一個方向旋轉(zhuǎn),當終止位置和起始位置成一直線時,所成的角叫做平角。把一個圓周分成360等份,每一份叫做一度的角。 2.角的平分線定義:一條射線把一個角分成兩個相等的角,這條射線叫做這個角的平分線。另一種是一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。 表示法:∵AB=BC∴點 B為 AC的中點 或∵ AB= MAC ∴點 B為AC的中點,或∵AC=2AB,∴點B為AC的中點 反之也成立∵點 B為AC的中點,∴AB=BC 或∵點B為AC的中點, ∴AB= AC 或∵點B為AC的中點, ∴AC=2BC六、角 角的兩種定義:一種是有公共端點的兩條射線所組成的圖形叫做角。 線段的性質(zhì)(公理):所有連接兩點的線中,線段最短。 2.射線的特征:“向一方無限延伸,它有一個端點。 二、直線的性質(zhì):經(jīng)過兩點有一條直線,并且只有一條直線,直線的這條性質(zhì)是以公理的形式給出的,可簡述為:過兩點有且只有一條直線,兩直線相交,只有一個交點。會對數(shù)據(jù)進行合理的分組。 例到從某學校3600人中抽出50名男生,取得他們的身高(單位cm),數(shù)據(jù)如下:181 181 179 177 177 177 176 175 175 175 175 174 174 174 174 173 173 173 173 172 172 172 172 172 171 171 171 170 170 169 l69 168 167 167 167 166 l66 l66 166 166 165 165 165 163 163 162 161 160 158 157 計算頻率,并畫出頻率分布直方圖 上指出身高在哪一組內(nèi)的男學生人數(shù)所占的比最大 3.請估計這些初三男學生身高在166.5cm以下的約有多少人?解:各組頻率依次是:, 從頻率分布表(或圖)中,—。 (4)從成績統(tǒng)計表看,甲組成績高于80分的人數(shù)為20人,乙組成績高于80分的人數(shù)為24人,所以,乙組成績集中在高分段的人數(shù)多,同時,乙組得滿分的人數(shù)比甲組得滿分的人數(shù)多6人,從這一角度看,乙組的成績較好。 (2)算得=172, 所以甲組成績較乙組波動要小。解:略 [規(guī)律總結(jié)]求平均數(shù)有三種方法,即當所給數(shù)據(jù)比較分散時,一般用平均數(shù)的概念來求;著所給數(shù)據(jù)較大且都在某一數(shù)a上下波動時,通常采用簡化公式;若所給教據(jù)重復出現(xiàn)時,通常采用加權(quán)平均數(shù)公式來計算。 研究頻率分布的方法;得到一數(shù)據(jù)的頻率分布和方法,通常是先整理數(shù)據(jù),后畫出頻率分布直方圖,其步驟是: (1)計算最大值與最小值的差;(2)決定組距與組數(shù);(3)決定分點;(4)列領(lǐng)率分布表;(5)繪頻率分布直方圖。 所有小長方形的面積之和等于各組頻率之和等于1。 圖中每個小長方形的高等于該組的頻率除以組距。 (4)頻率分布表:將一組數(shù)據(jù)的分組及各組相應的頻數(shù)、頻率所列成的表格叫做頻率分布表。各個小組的頻數(shù)之和等于數(shù)據(jù)總數(shù)n。 四、頻率分布 有關(guān)概念 (1)分組:將一組數(shù)據(jù)按照統(tǒng)一的標準分成若干組稱為分組,當數(shù)據(jù)在100個以內(nèi)時,通常分成5-12組。 標準差:方差()的算術(shù)平方根叫做標準差(S)。 三、反映數(shù)據(jù)波動大小的特征數(shù): 方差: (l)的方差, (2)簡化計算公式:(為較小的整數(shù)時用這個公式要比較方便) (3)記的方差為,設(shè)a為常數(shù),的方差為,則=。 眾數(shù):在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。 二、反映數(shù)據(jù)集中趨勢的特征數(shù) 平均數(shù) (1)的平均數(shù), (2)加權(quán)平均數(shù):如果n個數(shù)據(jù)中,出現(xiàn)次,出現(xiàn)次,……,出現(xiàn)次(這里),則 (3)平均數(shù)的簡化計算: 當一組數(shù)據(jù)中各數(shù)據(jù)的數(shù)值較大,并且都與常數(shù)a接近時,設(shè)的平均數(shù)為則:。解:略 例已知a,b是常數(shù),且y+b與x+:y是x的一次函數(shù).分析:應寫出y+b與x+a成正比例的表達式,然后判斷所得結(jié)果是否符合一次函數(shù)定義.證明:由已知,有y+b=k(x+a),其中k≠0.整理,得y=kx+(ka-b).  ?、僖驗閗≠0且ka-b是常數(shù),故y=kx+(ka-b)是x的一次函數(shù)式. 例填空:如果直線方程ax+by+c=0中,a<0,b<0且bc<0,則此直線經(jīng)過第________象限.分析:先把ax+by+c=<0,b<0,所以,又bc<0,即<0,故->=kx+l中,k=-<0,l=->0,此直線與y軸的交點(0,-),所以此直線過第一、二、四象限. 例把反比例函數(shù)y=與二次函數(shù)y=kx2(k≠0)畫在同一個坐標系里,正確的是( ).答:選(D).這兩個函數(shù)式中的k的正、負號應相同(圖13-110). 例畫出二次函數(shù)y=x26x+7的圖象,根據(jù)圖象回答下列問題:(1)當x=1,1,3時y的值是多少?(2)當y=2時,對應的x值是多少?(3)當x>3時,隨x值的增大y的值怎樣變化?(4)當x的值由3增加1時,對應的y值增加多少?分析:要畫出這個二次函數(shù)的圖象,首先用配方法把y=x26x+7變形為y=(x3)22,確定拋物線的開口方向、對稱軸、頂點坐標,然后列表、描點、畫圖.解:圖象略. 例拖拉機開始工作時,油箱有油45升,如果每小時耗油6升.(1)求油箱中的余油量Q(升)與工作時間t(時)之間的函數(shù)關(guān)系式;(2)畫出函數(shù)的圖象.答:(1)Q=456t.(2)圖象略.注意:這是實際問題,圖象只能由自變量t的取值范圍0≤t≤,而不是直線.代數(shù)部分第七章:統(tǒng)計初步知識點:一、總體和樣本: 在統(tǒng)計時,我們把所要考察的對象的全體叫做總體,其中每一考察對象叫做個體。對稱軸在y軸右側(cè);反比例函數(shù): 正比例函數(shù)與反比例函數(shù)的對照表:例題: 例正比例函數(shù)圖象與反比例函數(shù)圖象都經(jīng)過點P(m,4),已知點P到x軸的距離是到y(tǒng)軸的距離2倍. ⑴求點P的坐標.; ⑵求正比例函數(shù)、反比例函數(shù)的解析式。 (2)函數(shù)值:給自變量在取值范圍內(nèi)的一個值所求得的函數(shù)的對應值。 ③解析式是只含有一個自變量的偶次根式的函數(shù),自變量取值范圍是使被開方數(shù)非負的實數(shù)。 (1)自變量取值范圍的確是: ①解析式是只含有一個自變量的整式的函數(shù),自變量取值范圍是全體實數(shù)。 3.點P(x, y)坐標的幾何意義: (1)點P(x, y)到x軸的距離是| y |; (2)點P(x, y)到y(tǒng)袖的距離是| x |; (3)點P(x, y)到原點的距離是 4.關(guān)于坐標軸、原點對稱的點的坐標的特征: (1)點P(a, b)關(guān)于x軸的對稱點是; (2)點P(a, b)關(guān)于x軸的對稱點是; (3)點P(a, b)關(guān)于原點的對稱點是; 二、函數(shù)的概念 常量和變量:在某一變化過程中可以取不同數(shù)值的量叫做變量;保持數(shù)值不變的量叫做常量。 (2)坐標軸上的點有如下特征: 點P(x, y)在x軸上y為0,x為任意實數(shù)。在平面直角坐標系內(nèi)的點和有序?qū)崝?shù)對之間建立了—一對應的關(guān)系。解:略 [規(guī)律總結(jié)]此題先解字母不等式,后著眼已知的解集,探求成立的條件,此種類型題都采用逆向思考法來解。解:略 方法5:逆向思考法 例已知關(guān)于x的不等式的解集是x>3,求a的值。解:略 [規(guī)律總結(jié)]解一元一次不等式與解一元一次方程的步驟類似,但要注意當不等式的兩邊都乘以或除以同一個負數(shù)時,不等號的方向必須改變,類比法解題,使學生容易理解新知識和掌握新知識。 方法3:類比法 例解下列一元一次不等式,并把解集在數(shù)軸上表示出來。 方法2:特殊值法 例若a<b<0,那么下列各式成立的是( ) A、 B、ab<0 C、 D、 分析:使用直接解法解答常常費時間,又因為答案在一般情況下成立,當然特殊情況也成立,因此采用特殊值法。例題:方法1:利用不等式的基本性質(zhì) 判斷正誤: (1)若a>b,c為實數(shù),則>; (2)若>,則a>b 分析:在(l)中,若c=0,則=; 在(2)中,因為”>”,所以。 (2)解法:先求出各不等式的解集,再確定解集的公共部分。 (2)解法:與解一元一次方程類似,但要特別注意當不等式的兩邊同乘以(或除以)一個負數(shù)時,不等號方向要改變。 2.求不等式(組)的解集的過程叫做解不等式(組)。 不等式的所有解的集合,叫做這個不等式的解集。(3)不等式兩邊都乘以(或除以)同一個負數(shù),不等號方向改變,如a>b,c<0ac<bc. 注:在不等式的兩邊都乘以(或除以)一個實數(shù)時,一定要養(yǎng)成好的習慣、就是先確定該數(shù)的數(shù)性(正數(shù),零,負數(shù))再確定不等號方向是否改變,不能像應用等式的性質(zhì)那樣隨便,以防出錯。(表示不等關(guān)系的常用符號:≠,<,>)。 例某商場銷售一批名牌襯衫,平均每天售出20件,每件盈利40元,為了擴大銷售,增加盈利,減少庫存,商場決定采取適當?shù)慕档统杀敬胧?,?jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件。求乙連的行進速度及追上甲連的時間分析:設(shè)乙連的速度為v千米/小時,追上甲連的時間為t小時,則甲連的速度為(v–28)千米/小時,這時乙連行了小時,其等量關(guān)系為:甲走的路程=乙走的路程=30例某工廠原計劃在規(guī)定期限內(nèi)生產(chǎn)通訊設(shè)備60臺支援抗洪,由于改進了操作技術(shù);每天生產(chǎn)的臺數(shù)比原計劃多50%,結(jié)果提前2天完成任務(wù),求改進操作技術(shù)后每天生產(chǎn)通訊設(shè)備多少臺?分析:設(shè)原計劃每天生產(chǎn)通訊設(shè)備x臺,則改進操作技術(shù)后每天生產(chǎn)x(1+)臺,等量關(guān)系為:原計劃所用時間–改進技術(shù)后所用時間=2天 解:略例某商廈今年一月份銷售額為60萬元,二月份由于種種原因,經(jīng)營不善,銷售額下降10%,以后經(jīng)加強管理,又使月銷售額上升,到四月份銷售額增加到96萬元,求三、四月份平均每月增長的百分率是多少?分析:設(shè)三、四月份平均每月增長率為x%,二月份的銷售額為60(1–10%)萬元,三月份的銷售額為二月份的(1+x)倍,四月份的銷售額又是三月份的(1+x)倍,所以四月份的銷售額為二月份的(1+x)2倍,等量關(guān)系為:四月份銷售額為=96萬元。圖示法:就是利用圖表示題中的數(shù)量關(guān)系,它可以使量與量之間的關(guān)系更為直觀,這種方法能幫助我們更好地理解題意。線示法:就是用同一直線上的線段表示應用題中的數(shù)量關(guān)系,然后根據(jù)線段長度的內(nèi)在聯(lián)系,找出等量關(guān)系。解:略[規(guī)律總結(jié)]對于一個二元一次方程和一個二元二次方程組成的方程組一般用代入消元法,對于兩個二元二次方程組成的方程組,一定要先把其中一個方程因式分解化為兩個一次方程再和第二個方程組成兩個方程組來求解。解:略[規(guī)律總結(jié)]加減消元法是最常用的消元方法,消元時那個未知數(shù)的系數(shù)最簡單就先消那個未知數(shù)。解:略[規(guī)律總結(jié)]此類題目可以先解出第一方程的兩個解,但有時這樣又太復雜,用根與系數(shù)的關(guān)系就比較簡單。但要注意檢驗一下方程是否有解。 [規(guī)律總結(jié)]對于根的判別式的三種情況要很熟練,還有要特別留意二次項系數(shù)不能為0例已知a、b是方程的兩個根,求下列各式的值:(1);(2)分析:先算出a+b和ab的值,再代入把(1)(2)變形后的式子就可求出解。三、根的判別式及根與系數(shù)的關(guān)系例已知關(guān)于x的方程:有兩個相等的實數(shù)根,求p的值。 [規(guī)律總結(jié)]對于帶字母系數(shù)的方程解法和一般的方程沒有什么區(qū)別,在用公式法時要注意判斷△的正負。考點與命題趨向分析例題: 一、一元二次方程的解法 例解下列方程: (1);(2);(3)分析:(1)用直接開方法解;(2)用公式法;(3)用因式分解法 解:略[規(guī)律總結(jié)]如果一元二次方程形如,就可以用直接開方法來解;利用公式法可以解任何一個有解的一元二次方程,運用公式法解一元二次方程時,一定要把方程化成一般形式。 (2)三元一次方程組: 解法:代入消元法和加減消元法 二元二次方程組: (1)定義:由一個二元一次方程和一個二元二次方程組成的方程組以及由兩個二元二次方程組成的方程組叫做二元二次方程組。 四、方程組 方程組的解:方程組中各方程的公共解叫做方程組的解。 特殊方法:換元法。 (4)一元二次方程的根的判別式: 當Δ>0時方程有兩個不相等的實數(shù)根; 當Δ=0時方程有兩個相等的實數(shù)根; 當Δ 0時方程沒有實數(shù)根,無解; 當Δ≥0時方程有兩個實數(shù)根 (5)一元二次方程根與系數(shù)的關(guān)系: 若是一元二次方程的兩個根,那么:, (6)以兩個數(shù)為根的一元二次方程(二次項系數(shù)為1)是: 三、分式方程 (1)定義:分母中含有未知數(shù)的方程叫做分式方程。 (4)一元一次方程有唯一
點擊復制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1