【摘要】......圓錐曲線的最值、范圍問題與圓錐曲線有關的范圍、最值問題,各種題型都有,既有對圓錐曲線的性質(zhì)、曲線與方程關系的研究,又對最值范圍問題有所青睞,它能綜合應用函數(shù)、三角、不等式等有關知識,緊緊抓住圓錐曲線的定義進行轉(zhuǎn)
2025-03-31 00:04
【摘要】圓錐曲線中的最值及范圍問題課時考點14高三數(shù)學備課組考試內(nèi)容:橢圓、雙曲線、拋物線的幾何性質(zhì)及直線與圓錐曲線的位置關系.高考熱點:解析幾何與代數(shù)方法的綜合.熱點題型1:重要不等式求最值新題型分類例析熱點題型2:利用函數(shù)求最值熱點題型3:利用導數(shù)求最值熱點題型4:利用判別
2024-11-14 16:44
【摘要】.專題14圓錐曲線中的最值和范圍問題★★★高考在考什么【考題回放】1.已知雙曲線(a0,b0)的右焦點為F,若過點F且傾斜角為60°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(C)A.(1,2)B.(1,2)C.
2025-07-31 00:14
【摘要】WORD資料可編輯高三數(shù)學專題復習圓錐曲線中的最值問題和范圍的求解策略最值問題是圓錐曲線中的典型問題,它是教學的重點也是歷年高考的熱點。解決這類問題不僅要緊緊把握圓錐曲線的定義,而且要善于綜合應用代數(shù)、平幾、三角等相關知識。以下從五個方面予以闡述。一.求距離的最
2025-03-30 05:53
【摘要】2020/12/131熱烈歡迎領導和專家蒞臨指導2020/12/132圓錐曲線中的最值問題?復習目標:?1.能根據(jù)變化中的幾何量的關系,建立目標函數(shù),然后利用求函數(shù)最值的方法(如利用一次或二次函數(shù)的單調(diào)性,三角函數(shù)的值域,基本不等式,判別式等)求出最值.
2024-11-14 23:19
【摘要】......圓錐曲線中的最值問題一、圓錐曲線定義、性質(zhì)1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-31 00:03
【摘要】高考專題圓錐曲線中的最值和范圍問題★★★高考要考什么1 圓錐曲線的最值與范圍問題(1)圓錐曲線上本身存在的最值問題:①橢圓上兩點間最大距離為2a(長軸長).②雙曲線上不同支的兩點間最小距離為2a(實軸長).③橢圓焦半徑的取值范圍為[a-c,a+c],a-c與a+c分別表示橢圓焦點到橢圓上的點的最小距離與最大距離.④拋物線上的點中頂點與拋物線的準線距離最近.
2025-08-11 19:25
【摘要】圓錐曲線專題求離心率的值師生互動環(huán)節(jié)講課內(nèi)容:歷年高考或模擬試題關于離心率的求值問題分類精析與方法歸納點撥。策略一:根據(jù)定義式求離心率的值在橢圓或雙曲線中,如果能求出的值,可以直接代公式求離心率;如果不能得到ca、的值,也可以通過整體法求離心率:橢圓中;雙曲線中.ca、21a
2025-03-31 00:02
【摘要】方法總結(jié)求解圓錐曲線離心率的取值范圍求圓錐曲線離心率的取值范圍是高考的一個熱點,也是一個難點,求離心率的難點在于如何建立不等關系定離心率的取值范圍.一、直接根據(jù)題意建立不等關系求解.例1:(2008湖南)若雙曲線(a>0,b>0)上橫坐標為的點到右焦點的距離大于它到左準線的距離,則雙曲線離心率的取值范圍是A.(1,2) B.(2,+) C.(1,5)
2025-08-11 08:31
【摘要】......學習參考圓錐曲線專題求離心率的值師生互動環(huán)節(jié)講課內(nèi)容:歷年高考或模擬試題關于離心率的求值問題分類精析與方法歸納點撥。策略一:根據(jù)定義式求離心率的值在橢圓或雙曲線中,如果能求出的值,可以直接代
【摘要】望城一中數(shù)學教研組嚴文鴛2022年12月1.教材、考綱分析2.歷年試題分析3.高考命題趨勢分析4.典型例題分析圓錐曲線背景下的最值與定值問題圓錐曲線背景下的最值與定值問題利用“坐標法”來研究幾何問題是解析幾何的基本思想。對圓錐曲線背景下的最值與定值問題
2025-08-07 16:32
【摘要】專題八圓錐曲線背景下的最值與定值問題【考點搜索】【考點搜索】1.圓錐曲線中取值范圍問題通常從兩個途徑思考,一是建立函數(shù),用求值域的方法求范圍;二是建立不等式,通過解不等式求范圍.2.注意利用某些代數(shù)式的幾何特征求范圍問題(如斜率、兩點的距離等).【課前導引】
2024-11-26 22:38
【摘要】求圓錐曲線的最值常用哪些方法?圓錐曲線中有關最值問題的研究上海市揚子中學孫宇圓錐曲線中的最值問題(一)想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率圓錐曲線中的最值問題(一)Oy
【摘要】解析幾何中的參數(shù)取值范圍問題例1:選題意圖:利用三角形中的公理構(gòu)建不等式xy設分別是橢圓的左、右焦點,若在直線上存在點P,使線段的中垂線過點,求橢圓離心率的取值范圍.解法一:設P,F(xiàn)1P的中點Q的坐標為,則kF1P=,kQF2=.由kF1P·kQF2=-1,得y2=.因為y2≥0,但注意b2+2c2≠0,所以2c2-b2>0,
【摘要】圓錐曲線中的最值問題制作:黃石市實驗高中成冬英想一想OyxOyx換元法判別式法Q(3,4)P利用幾何意義:看成PQ的斜率Oyx變題OBAyxCDOyx
2024-11-17 23:29