【摘要】(一)用什么方法作出正弦函數(shù)的圖象呢?描點法但描點法的各點的縱坐標都是查三角函數(shù)表得到的數(shù)值,不易描出對應點的精確位置,因此作出的圖象不夠準確.幾何法用單位圓中的正弦線作正弦函數(shù)的圖象.正弦函數(shù)的圖象為了作三角函數(shù)的圖象,三角函數(shù)的自變量要用弧度制來度量,使自變量與函數(shù)值都為
2024-11-20 01:35
【摘要】函數(shù)圖象的變換函數(shù)圖象的變換引例:函數(shù)和的圖象分別是由的圖象經(jīng)過如何變化得到的?oyx1y=x2y=(x+1)2-2(2)將y=x2的圖象沿x軸向左
2024-11-18 12:27
【摘要】定義設函數(shù)y=f(x)(x∈A)的值域為C,從y=f(x)中解出x,得到x=φ(y)。如果對于y在C中的任何一個值,通過x=φ(y),x在A中都有唯一的值和它對應,那么,x=φ(y)(y∈C)就表示y是自變量,x是y的函數(shù)。叫做y=f(x)(x∈A)的反函數(shù)。記作x=f-1(
2024-11-17 04:47
【摘要】函數(shù)圖象的變換引例:函數(shù)和的圖象分別是由的圖象經(jīng)過如何變化得到的?oyx1y=x2y=(x+1)2-2(2)將y=x2的圖象沿x軸向左平移一個單位,再沿y軸方向向下平
2024-11-17 09:23
【摘要】xyoP(x,y)1-11-1M?的終邊A(1,0)TsincostanMPOMAT??????R[-1,1]R[-1,1]R值域定義域三角函數(shù)sin?cos?tan?{|,}2kkZ?????
2024-11-18 08:32
【摘要】)sin(????xAyXyoXsin()yAx????sinyx?例.用五點法畫出當x∈[0,2π]時下列函數(shù)圖象:解:xsinx2sinx1sinx202??32?2?01-100020-20012012?0y=2sinx1y
2024-11-20 01:38
2024-11-18 00:48
【摘要】正弦函數(shù)、余弦函數(shù)的圖象諸城一中講解人孫健鵬o1A...........。1-1函數(shù)y=sinx,x?[0,2?)的圖象3?/2??/2o2?xy每一份多少弧度?.π4-3?/2o-?π2-π3-?
2024-11-18 01:03
【摘要】——正弦、余弦函數(shù)圖象sin(2k+x)=(kZ)??sinxxy??2?3?4?5?60???2?1-1y=sinx(xR)?一、正弦函數(shù)的“五點畫圖法”(0,0)、(,1)、(,0)、(,
2024-11-19 21:09
【摘要】三角函數(shù)的圖象與性質(zhì)、余弦函數(shù)的圖象x,對應的正弦值(sinx)、余弦值(cosx)是否存在?惟一?問題提出t57301p2???????,角α的正弦線、余弦線分別是什么?P(x,y)OxyMsinα=MPcosα=OM,要直觀、全面了解正、余弦函數(shù)的基本特性,我們應從哪個方面
【摘要】y=sinx的圖象和性質(zhì)32?x2??2?yO1-1O1BA(O1)(B)所以我們只需要仿照上述方法,取一系列的x的值,找到這些角的正弦線,再把這些正弦線向右平移,使他們的起點分別與x軸上表示的數(shù)的點重合,再用光滑的曲線把這些正弦線的終點連接起來就得到正弦函數(shù)
【摘要】函數(shù)y=sinxy=cosx圖形定義域值域最值單調(diào)性奇偶性周期對稱性2?52?2?32??0xy2??1-1xR?xR?[1,1]y??[1,1]y??22xk????時,1maxy?22xk?????時,1miny??2
2024-11-18 12:25
【摘要】正弦函數(shù)圖像的作出以上我們作出了y=sinx,x∈[0,2π]的圖象,因為sin(2kπ+x)=sinx(k∈Z),所以正弦函數(shù)y=sinx在x∈[-2π,0],x∈[2π,4π],x∈[4π,6π]時的圖象與x∈[0,2π]時的形狀完全一樣,只是位置不同?,F(xiàn)在把上述圖象沿著x軸平
【摘要】對數(shù)函數(shù)圖象與性質(zhì)a10a1圖象性質(zhì)定義域:值域:在(0,+∞)上是函數(shù)在(0,+∞)上是函數(shù)32.521.510.5-0.5-1-1.5-2
2024-11-19 21:10
【摘要】請同學生們回憶一下什么是正弦線?什么是余弦線?什么是正切線xyPOA(1,0)T正弦線:MP余弦線:OM正切線:ATM[0,2?]y-101?2?.....xy=sinx正弦曲線yo1
2024-11-17 09:19