freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

最新畢業(yè)論文基于matlab的人臉識(shí)別系統(tǒng)設(shè)計(jì)與仿真含matlab源程序-文庫吧資料

2025-06-28 07:52本頁面
  

【正文】 的曾受訓(xùn)練的圖像和測試圖像絕對(duì)差異。 第一,每個(gè)灰度級(jí)的頻率是計(jì)算并存儲(chǔ)在媒介作進(jìn)一步處理。 此算法提供我們的建議技術(shù)名為直方圖處理人臉識(shí)別的第一部分。 人臉識(shí)別的matlab實(shí)現(xiàn) 用戶界面 實(shí)現(xiàn)結(jié)果 本章小結(jié)在過去十年中基于直方圖方法證其明簡單性和有用性。直方圖均衡化的優(yōu)點(diǎn)是能自動(dòng)地增強(qiáng)整個(gè)圖像的對(duì)比度,但它的具體的增強(qiáng)效果不好控制,處理的結(jié)果總是得到全局均衡化的直方圖。第四章 基于直方圖的人臉識(shí)別實(shí)現(xiàn)用灰度直方圖增強(qiáng)圖像對(duì)比度是基于圖像灰度值統(tǒng)計(jì)的一種重要方法,它以概率論為基礎(chǔ)的,常用的實(shí)現(xiàn)算法主要是直方圖均衡化和直方圖規(guī)定化。為了在不修改其他算法的基礎(chǔ)上,擴(kuò)大系統(tǒng)處理圖像的類型和范圍,將輸入圖像首先轉(zhuǎn)換為統(tǒng)一的類型,是多數(shù)人臉圖像預(yù)處理中的第一步。所以,和灰度變換及濾波去噪部分的設(shè)計(jì)思路相同,在仿真系統(tǒng)中,筆者給出了canny、sobel、log、prewitt四種算子在不同灰度閾值下、不同方向的邊緣檢測算法,使用者可從檢測結(jié)果中加以比較、選擇合適的算法。邊緣檢測的方法有很多,主要有:微分算子法、Sobel算子法、拉普拉斯算子法、canny算子法等。故在仿真系統(tǒng)中提供了三種灰度變換效果比較及選擇界面,用戶可根據(jù)需要選用。直方圖均衡化和直方圖規(guī)定化的灰度變換原理和實(shí)現(xiàn)方法可由matlab仿真來實(shí)現(xiàn)。這一過程,也被稱作灰度歸一化。通過灰度變換,可對(duì)原始圖像中的光照不均進(jìn)行補(bǔ)償,使得待識(shí)別人臉圖像遵循同一或相似的灰度分布。(3)自適應(yīng)濾波自適應(yīng)濾波能夠根據(jù)圖像的局部方差來調(diào)整濾波器的輸出,其濾波效果要優(yōu)于線性濾波,同時(shí)可以更好地保存圖像的邊緣和高頻細(xì)節(jié)信息。中值濾波方法的最大優(yōu)點(diǎn)是抑制噪聲效果明顯且能保護(hù)邊界。考慮濾波模板大小對(duì)濾波效果影響較大,仿真系統(tǒng)選擇算法時(shí)對(duì)同種濾波算法提供了不同模板大小的情況。對(duì)圖像進(jìn)行線性濾波可以去除圖像中某些特定類型的噪聲,如圖像中的顆粒噪聲,高斯噪聲、椒鹽噪聲等。在人臉圖像預(yù)處理中使用較多的濾波是平滑濾波,方法可分為以下三類:線性濾波、中值濾波、自適應(yīng)濾波。濾波的方法有很多,如各種平滑濾波、各種銳化濾波等,關(guān)于各種濾波方法的原理和分類可參考文獻(xiàn)[2]。所以,在本仿真系統(tǒng)中,對(duì)上述的每種預(yù)處理方法全部加以實(shí)現(xiàn)的同時(shí),還對(duì)三種最常用預(yù)處理方法:濾波去噪、灰度變換、邊緣檢測,提供了多種不同的具體算法供用戶比較、選擇之用。 仿真系統(tǒng)中實(shí)現(xiàn)的人臉圖像預(yù)處理方法根據(jù)所查閱文獻(xiàn)資料,常應(yīng)用于人臉圖像的預(yù)處理方法有:圖像類型轉(zhuǎn)換、濾波去噪、灰度變換、邊緣檢測及二值化、尺寸歸一化、灰度歸一化等。該系統(tǒng)可對(duì)不同條件下的原始圖像進(jìn)行相應(yīng)的預(yù)處理。用在同一系統(tǒng)中的可能只有其中一種或幾種預(yù)處理方法,但一旦庫中采集到的原始圖像質(zhì)量發(fā)生較大變化(如人臉大小、光照強(qiáng)度、拍攝條件、成像系統(tǒng)等方面變化),原有的預(yù)處理模塊便不能滿足特征提取的需要,還要更新,這是極不方便的。 ) 原始圖片 灰度圖片 均衡化灰度圖片 人臉定位 人臉圖像的預(yù)處理不同的人臉識(shí)別系統(tǒng)根據(jù)其采用的圖像來源和識(shí)別算法需要不同,采用的預(yù)處理方法也不同。,39。,[BB2(1,j2),BB2(1,j1),BB2(1,j),BB2(1,j+1)],39。rectangle(39。 endendfigure,imshow(I)。 (BB2(1,k)/BB2(1,k+1)) mx=p。for k=3:4:s21 p=BB2(1,k)*BB2(1,k+1)。 [s1 s2]=size(BB2)。BB1=struct2cell(BB)。BoundingBox39。end figure,imshow(BW)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% detection of face object L = bwlabel(BW,8)。 end x1=x1+r。 end y1=y1+c。 pr1=0。s1=y1。 r1=x1。 pr=o*100/s。 for j=1:10 if (y2=c | y2=9*c) | (x1==1 | x2==r*10) loc=find(BW(x1:x2, y1:y2)==0)。 for i=1:10 y1=1。x2=r。c=floor(n2/10)。figure,imshow(BW) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% minimisation of background portion [n1 n2]=size(BW)。I=rgb2gray(i)。39?;诜e分圖像(Integral Image)特征的人臉檢測方法是Viola等新近提出的一種算法,它綜合使用了積分圖像描述方法、Adaboost學(xué)習(xí)算法及訓(xùn)練方法、級(jí)聯(lián)弱分類器。支撐向量機(jī)(Support Vector Machine,SVM)法是在統(tǒng)計(jì)學(xué)習(xí)理論基礎(chǔ)上發(fā)展出的一種新的模式識(shí)別方法,它基于結(jié)構(gòu)風(fēng)險(xiǎn)最小化的原理,較之于基于經(jīng)驗(yàn)風(fēng)險(xiǎn)最小化的人工神經(jīng)網(wǎng)絡(luò),一些難以逾越的問題,如:模型選擇和過學(xué)習(xí)問題、非線性和維數(shù)災(zāi)難問題、局部極小點(diǎn)問題等都得到了很大程度上的解決。人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)的方法是通過訓(xùn)練一個(gè)網(wǎng)絡(luò)結(jié)構(gòu),把模式的統(tǒng)計(jì)特性隱含在神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)和參數(shù)之中。這類方法有:特征臉法、人工神經(jīng)網(wǎng)絡(luò)法、支持向量機(jī)法;積分圖像法。以上三種方法的優(yōu)缺點(diǎn)比較見表31。基于先驗(yàn)知識(shí)的方法則采用符合人臉生理結(jié)構(gòu)特征的人臉鑲嵌圖(mosaic image)模型,并在分析了足夠多的人臉圖像樣本的基礎(chǔ)上,針對(duì)人臉的灰度、邊緣、紋理等信息,建立一種關(guān)于人臉的知識(shí)庫。模板匹配的方法一般是人為地先定義一個(gè)標(biāo)準(zhǔn)人臉模板,計(jì)算輸入圖像與模板的似然度;然后,確定一個(gè)似然度閾值,用以判斷該輸入圖像中是否包含人臉。尋找到膚色區(qū)域后,必須進(jìn)行驗(yàn)證,排除類膚色區(qū)域。因此他們采用廣泛使用的RGB顏色空間,在濾去亮度值的圖像中通過比較像素點(diǎn)的r、g值與膚色范圍來推斷該像素點(diǎn)及其鄰域是否屬于人臉區(qū)域。在彩色圖像中,顏色是人臉表面最為顯著的特征之一,利用顏色檢測人臉是很自然的想法?;陲@式特征的方法是指由人通過肉眼觀察,總結(jié)出人臉區(qū)別于“非人臉”區(qū)域的特征,然后根據(jù)被檢測區(qū)域是否滿足這些“人臉特征”,來判定該區(qū)域是否包含人臉。 基本框架圖 人臉檢測定位算法人臉檢測定位算法大致可分為兩大類:基于顯式特征的方法和基于隱式特征的方法。通常檢測和定位結(jié)合進(jìn)行。它包括幾個(gè)步驟:對(duì)采集到的圖像,首先進(jìn)行人臉檢測(在輸入圖像中尋找人臉),給出人臉有無的結(jié)果;然后進(jìn)行人臉定位,確定人臉的位置并提取出來。如,用戶可根據(jù)需要選擇使用不同的濾波方法去除噪聲、不同的邊緣檢測算子檢測人臉邊緣、選擇不同的灰度變換算法實(shí)現(xiàn)圖像的灰度校正和灰度歸一化,仿真系統(tǒng)同時(shí)還實(shí)現(xiàn)了尺寸歸一化、二值化等其他常用的圖像預(yù)處理算法。鑒于此,作者在總結(jié)分析了灰度變換、濾波去噪、邊緣檢測三種廣泛應(yīng)用于不同人臉識(shí)別系統(tǒng)中的預(yù)處理方法基礎(chǔ)上,設(shè)計(jì)了一個(gè)通用的人臉圖像預(yù)處理仿真系統(tǒng)。常用的人臉圖像預(yù)處理方法有:濾波去噪、灰度變換、圖像二值化、邊緣檢測、尺寸歸一化、灰度歸一化等。其目的是在去除噪聲,加強(qiáng)有用信息,對(duì)輸入設(shè)備或其他因素造成的退化現(xiàn)像進(jìn)行復(fù)原,為后續(xù)的特征提取和識(shí)別作準(zhǔn)備。人臉識(shí)別系統(tǒng)一般包括人臉檢測與定位、人臉圖像預(yù)處理、特征提取和匹配識(shí)別四個(gè)組成部分。作為人臉識(shí)別系統(tǒng)中圖像預(yù)處理工具,有非常好的處理功能。,[,],)。j=edge(i,39。f:39。j2=imfilter(i,h)。gaussian39。subplot(1,2,2),imshow(j1)。subplot(1,2,1),imshow(j)。guassian39。)。功能實(shí)現(xiàn)的代碼如下:i=imread(39。在本文實(shí)例中,為了使濾波效果更明顯,我們事先為圖像認(rèn)為增加濾波,然后用自適應(yīng)濾波方法對(duì)圖像進(jìn)行濾波。figure,subplot(1,2,1),imhist(i)。j=histeq(i)。f:\39。)2)圖像增強(qiáng)(1)灰度圖像直方圖均衡化通過比較原圖和直方圖均衡化后的圖像可見,圖像變得更清晰,而且均衡化后的直方圖比原直方圖的形狀更理想。imwrite(j,39。j=rgb2gray(i)。f:\39。1)圖像類型的轉(zhuǎn)換因后面的圖像增強(qiáng),邊緣檢測都是針對(duì)灰度圖像進(jìn)行的,而我們的原圖是RGB圖像,所以首先我們要對(duì)原圖類型進(jìn)行轉(zhuǎn)換。()函數(shù)可以進(jìn)行邊緣檢測,在其參數(shù)里面,可以根據(jù)需要選擇合適的算子及其參數(shù)。邊緣檢測算子可以檢查每個(gè)像素的鄰域并對(duì)灰度變化率進(jìn)行量化,也包括對(duì)方向的確定,其中大多數(shù)是基于方向?qū)?shù)掩模求卷積的方法。在Matlab中,各種濾波方法都是在空間域中通過不同的濾波算子實(shí)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1