【摘要】課堂反饋1.如圖41-1,一圓柱高8cm,底面半徑為6πcm,一只螞蟻從點(diǎn)A沿外表面爬到點(diǎn)B處吃食,要爬行的最短路程是()A.6cmB.8cmC.10cmD.12cm圖41-1C2.如圖41-2,有兩棵樹,一棵高
2025-06-24 00:06
【摘要】第14章勾股定理14.2勾股定理的應(yīng)用第1課時(shí)勾股定理在生活中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識(shí)目標(biāo)勾股定理的應(yīng)用知識(shí)目標(biāo)1.經(jīng)過觀察、操作、討論、發(fā)現(xiàn),歸納理解立體圖形表面最短路徑問題的求解思路.2.在理解勾股定理及其逆定理的基礎(chǔ)上,通過分析、探究,能夠?qū)⑵渌麑?shí)際問
2025-06-18 12:08
【摘要】第14章勾股定理勾股定理的應(yīng)用第2課時(shí)勾股定理及其逆定理的綜合應(yīng)用用勾股定理及逆定理可以解決實(shí)際生活中的很多問題,勾股定理的條件是,逆定理的條件是.直角三角形三角形兩邊的平方和等于第三邊的平方◎知識(shí)點(diǎn)勾股
2025-06-24 00:14
【摘要】第14章勾股定理勾股定理的應(yīng)用第1課時(shí)勾股定理的應(yīng)用1.勾股定理的變形:若直角三角形的兩直角邊分別為a、b,斜邊為c,則a2+b2=c2或a2=或b2=或a=或b=.2.
2025-06-25 17:54
2025-06-24 00:11
【摘要】在同一平面內(nèi),兩點(diǎn)之間,線段最短創(chuàng)設(shè)情境明確目標(biāo)從行政樓A點(diǎn)走到教學(xué)樓B點(diǎn)怎樣走最近?教學(xué)樓行政樓BA你能說出這樣走的理由嗎?在同一平面內(nèi),如圖螞蟻在圓柱體的A點(diǎn)沿側(cè)面爬行到B點(diǎn),怎樣爬路程最短?創(chuàng)設(shè)情境明確目標(biāo)BA
【摘要】第14章勾股定理勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS立體圖形上的最短距離:將立體圖形側(cè)面展開,確定兩點(diǎn)在展開圖上的位置,連成,的長度就是立體圖形上的兩點(diǎn)間的最短距離.自我診斷1.如圖,長方體的高為3cm,底面是正方形,邊長為2cm,現(xiàn)在一蟲子從點(diǎn)A出發(fā),沿長方體表面到
2025-06-19 14:08
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-19 13:51
【摘要】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時(shí)勾股定理的驗(yàn)證及其簡單應(yīng)用拼圖法大多數(shù)是利用驗(yàn)證勾股定理.利用定理,知道直角三角形任意兩條邊的長,可求出的長,并能利用它解決相關(guān)的簡單的實(shí)際問題.例如一根長為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-22 21:12
2025-06-23 23:29
2025-06-20 18:49
2025-06-22 20:57
2025-06-19 14:20
【摘要】第14章勾股定理第2課時(shí)我們知道直角三角形中,兩條直角邊的平方和等于斜邊的平方,如果一個(gè)三角形中有兩邊的平方和等于第三邊的平方,那么這個(gè)三角形是否就是直角三角形呢?今天這節(jié)課我們就來學(xué)習(xí)這個(gè)問題。創(chuàng)設(shè)情境明確目標(biāo)...學(xué)習(xí)目標(biāo)下面有三組數(shù)分別是一個(gè)三角形的三邊長
2025-06-24 00:16
2025-06-23 04:01