【摘要】第14章勾股定理14.2勾股定理的應(yīng)用第2課時(shí)勾股定理在數(shù)學(xué)中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識(shí)目標(biāo)勾股定理的應(yīng)用知識(shí)目標(biāo)1.在理解勾股定理及其逆定理的基礎(chǔ)上,經(jīng)過(guò)觀察、分析、探究,能畫(huà)出長(zhǎng)為無(wú)理數(shù)的線段.2.通過(guò)分析圖形、思考、討論,能夠?qū)⑴c直角三角形有關(guān)的數(shù)學(xué)問(wèn)題
2025-06-24 00:16
2025-06-18 12:08
【摘要】第14章勾股定理勾股定理的應(yīng)用第1課時(shí)勾股定理的應(yīng)用1.勾股定理的變形:若直角三角形的兩直角邊分別為a、b,斜邊為c,則a2+b2=c2或a2=或b2=或a=或b=.2.
2025-06-25 17:54
【摘要】課堂反饋1.如圖42-1是由4個(gè)邊長(zhǎng)為1的正方形構(gòu)成的“田字格”.只用沒(méi)有刻度的直尺在這個(gè)“田字格”中最多可以作出以格點(diǎn)為端點(diǎn)、長(zhǎng)度為5的線段()A.2條B.5條C.7條D.8條圖42-1D2.如圖42-2,在四邊形ABCD
2025-06-24 00:19
【摘要】在同一平面內(nèi),兩點(diǎn)之間,線段最短創(chuàng)設(shè)情境明確目標(biāo)從行政樓A點(diǎn)走到教學(xué)樓B點(diǎn)怎樣走最近?教學(xué)樓行政樓BA你能說(shuō)出這樣走的理由嗎?在同一平面內(nèi),如圖螞蟻在圓柱體的A點(diǎn)沿側(cè)面爬行到B點(diǎn),怎樣爬路程最短?創(chuàng)設(shè)情境明確目標(biāo)BA
【摘要】第14章勾股定理勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS立體圖形上的最短距離:將立體圖形側(cè)面展開(kāi),確定兩點(diǎn)在展開(kāi)圖上的位置,連成,的長(zhǎng)度就是立體圖形上的兩點(diǎn)間的最短距離.自我診斷1.如圖,長(zhǎng)方體的高為3cm,底面是正方形,邊長(zhǎng)為2cm,現(xiàn)在一蟲(chóng)子從點(diǎn)A出發(fā),沿長(zhǎng)方體表面到
2025-06-19 14:08
【摘要】第14章勾股定理勾股定理的應(yīng)用第2課時(shí)勾股定理及其逆定理的綜合應(yīng)用用勾股定理及逆定理可以解決實(shí)際生活中的很多問(wèn)題,勾股定理的條件是,逆定理的條件是.直角三角形三角形兩邊的平方和等于第三邊的平方◎知識(shí)點(diǎn)勾股
2025-06-24 00:14
2025-06-20 18:49
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-23 23:29
2025-06-23 04:01
2025-06-19 13:51
【摘要】abc學(xué)習(xí)目標(biāo)課堂小結(jié)鞏固練習(xí)例題講解學(xué)習(xí)五步曲探究新知學(xué)習(xí)目標(biāo)1、掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法.2、能運(yùn)用勾股定理由已知直角三角形中的兩邊長(zhǎng),求出第三邊長(zhǎng).3、能正確靈活運(yùn)用勾股定理及由它得到的直角三角形的判別方法.2022年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì)
2025-06-19 13:41
2025-06-19 14:20
【摘要】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時(shí)勾股定理的驗(yàn)證及其簡(jiǎn)單應(yīng)用拼圖法大多數(shù)是利用驗(yàn)證勾股定理.利用定理,知道直角三角形任意兩條邊的長(zhǎng),可求出的長(zhǎng),并能利用它解決相關(guān)的簡(jiǎn)單的實(shí)際問(wèn)題.例如一根長(zhǎng)為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-22 20:57