freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

公路擋土墻畢業(yè)設(shè)計含外文翻譯-文庫吧資料

2025-01-24 13:32本頁面
  

【正文】 manner by focusing on conditions at impending collapse. Stability problem of natural slopes, or cut slopes are monly encountered in civil engineering projects. Solutions may be based on the slipline method, the limitequilibrium method, or limit analysis. The limitequilibrium method has gained wide acceptance in practice due to its simplicity. Most limitequilibrium method are based on the method of slices, in which a failure surface is assumed and the soil mass above the failure surface is divided into vertical slices. Global staticequilibrium conditions for assumed failure surface are examined, and a critical slip surface is searched, for which the factor of safety is minimized. In the development of the limitequilibrium method, efforts have focused on how to reduce the indeterminacy of the problem mainly by making assumptions on interslice forces. However, no solution based on the limitequilibrium method, not even the so called “rigorous” solutions can be regarded as rigorous in a strict mechanical sense. In limitequilibrium, the equilibrium equations are not satisfied for every point in the soil mass. Additionally, the flow rule is not satisfied in typical assumed slip surface, nor are the patibility condition and prefailure constitutive relationship. Limit analysis takes advantage of the upperand lowerbound theorems of plasticity theory to bound the rigorous solution to a stability problem from below and above. Limit analysis solutions are rigorous in the sense that the stress field associated with a lowerbound solution is in equilibrium with imposed loads at every point in the soil mass, while the velocity field associated with an upperbound solution is patible with imposed displacements. In simple terms, under lowerbound loadings, collapse is not in progress, but it may be imminent if the lower bound coincides with the true solution lies can be narrowed down by finding the highest possible lowerbound solution and the lowest possible upperbound solution. For slope stability analysis, the solution is in terms of either a critical slope height or a collapse loading applied on some portion of the slope boundary, for given soil properties and/or given slope geometry. In the past, for slope stability applications, most research concentrated on the upperbound method. This is due to the fact that the construction of proper statically admissible stress fields for finding lowerbound solutions is a difficult task. Most previous work was based on total stresses. For effective stress analysis, it is necessary to calculate porewater pressures. In the limitequilibrium method, porewater pressures are estimated from groundwater conditions simulated by defining a phreatic surface, and possibly a flow net, or by a porewater pressure ratio. Similar methods can be used to specify porewater pressure for limit analysis. The effects of porewater pressure have been considered in some studies focusing on calculation of upperbound solutions to the slope stability problem. Miller and Hamilton examined two types of failure mechanism: (1) rigid body rotation。設(shè)計參考文獻(xiàn)[1] 中華人民共和國國家標(biāo)準(zhǔn),《建筑邊坡工程技術(shù)規(guī)范》(GB50330—2002),人民交通出版社,北京,2002;[2] 陳忠達(dá),《公路擋土墻設(shè)計》,人民交通出版社,北京,1999;[3] 趙樹德,《土力學(xué)》,高等教育出版社,北京,2002;[4] 池淑蘭,《路基及支擋結(jié)構(gòu)》,中國鐵道出版社,北京,2002;[5] 鄧學(xué)均,《路基路面工程》,人民交通出版社,北京,2002;[6] 馮忠居,《基礎(chǔ)工程》,人民交通出版社,北京,2002;[7] 《基礎(chǔ)工程分析與設(shè)計》, 中國建筑工業(yè)出版社;[8] 朱彥鵬,《混凝土結(jié)構(gòu)設(shè)計原理》,重慶大學(xué)出版社,重慶,2002;[9] 張雨化,朱照宏,《道路勘測設(shè)計》,人民交通出版社,北京,1997;[10] 中華人民共和國國家標(biāo)準(zhǔn),《公路工程技術(shù)標(biāo)準(zhǔn)》(JTG B012003)人民交通出版社,北京,2004;[11] 其他與設(shè)計相關(guān)的資料等。而且大大提高了動手的能力,使我充分體會到了在創(chuàng)造過程中探索的艱難和成功時的喜悅。在設(shè)計過程中,我通過查閱大量有關(guān)資料,與同學(xué)交流經(jīng)驗和自學(xué),并向老師請教等方式,使自己學(xué)到了不少知識,也經(jīng)歷了不少艱辛,但收獲同樣巨大。此外,還得出一個結(jié)論:知識必須通過應(yīng)用才能實現(xiàn)其價值!有些東西以為學(xué)會了,但真正到用的時候才發(fā)現(xiàn)是兩回事,所以我認(rèn)為只有到真正會用的時候才是真的學(xué)會了??傊?,不管學(xué)會的還是學(xué)不會的的確覺得困難比較多,真是萬事開頭難,不知道如何入手。通過這次畢業(yè)設(shè)計,我才明白學(xué)習(xí)是一個長期積累的過程,在以后的工作、生活中都應(yīng)該不斷的學(xué)習(xí),努力提高自己知識和綜合素質(zhì)。畢業(yè)設(shè)計不僅是對前面所學(xué)知識的一種檢驗,而且也是對自己能力的一種提高。經(jīng)過幾個月的奮戰(zhàn)我的畢業(yè)設(shè)計終于完成了。對于多地震帶的地區(qū),只要在地基應(yīng)力允許的條件下,應(yīng)盡量擴(kuò)大抗滑計算值。擋土墻設(shè)計時,應(yīng)進(jìn)行詳細(xì)地調(diào)查、勘測,確定構(gòu)造物的形式與尺寸,運用合適的理論計算土壓力,并進(jìn)行穩(wěn)定性和截面強(qiáng)度方面的驗算,采取合理、可行的措施,以保證擋土墻的安全性。擋土墻的沉降縫和伸縮縫設(shè)置在一起,每隔10m設(shè)置一道,縫寬3cm,自墻頂做至基底,縫內(nèi)宜用瀝青麻絮、瀝青竹絨或涂以瀝青的木板等具有彈性材料,沿墻的內(nèi)、外、頂三側(cè)填塞。采用梯形截面,25cm厚5號漿砌片石加固,并設(shè)15cm厚砂礫墊層。(3)排水溝。此外,在泄水孔入口附近應(yīng)用易滲的粗顆粒材料做反濾層,并在泄水孔入口下方鋪設(shè)粘土夯實層,防止積水滲入地基不利于墻的穩(wěn)定性。若已滲入墻后填土中的水,則應(yīng)將其迅速排出,通常在擋土墻的下部設(shè)置泄水孔。截水溝又稱天溝,設(shè)置在挖方路基邊坡?lián)跬翂ζ马斠酝?,用以攔截并排除在山坡上流淌的地面徑流,減輕邊溝的水流負(fù)擔(dān),保證挖方邊坡不受流水沖刷,截水溝采用梯形截面,內(nèi)邊坡的坡度為1:1,采用25cm厚的5號漿砌片石加固,并設(shè)置15cm厚的砂礫墊層。良好的排水在寒冷地區(qū)可以減小回填土的凍脹壓力。2.5.1基底拓展為減少基底壓應(yīng)力,增加抗傾覆的穩(wěn)定性,在墻趾處伸出一臺階,以拓寬基底,墻趾臺階寬度為25mm,臺階高寬比為3:2。故此工程采用扶壁式擋土墻作為施工組織設(shè)計方案。一般情況下,坡高大于8米時不選擇采用重力式擋土墻作為支擋結(jié)構(gòu)。使用HRB335級鋼筋。由于該擋墻的尺寸較大,施工架設(shè)模板難度較大。墻踵板的選用材料跟墻面板的相同,屬于基礎(chǔ), 所以混凝土保護(hù)層的厚度應(yīng)大于70mm,此處取為C=,所以截面有效高度.由前面的計算可知,墻踵板的支點負(fù)彎矩為M=:求得:,.查表得選配,.驗算滿足適用條件.跨中正彎矩M=,同樣可得:,查表得選配,驗算滿足適用條件.連接墻踵板與扶肋之間的U形鋼筋N10,也可延至扶肋的頂面,作為扶肋兩側(cè)的分布鋼筋,在垂直于墻面板方向的鋼筋分布與墻踵板頂面縱向水平鋼筋N8相同.3. 墻趾板墻趾板的受力筋N1設(shè)置于墻趾板的底面,為了方便施工,將墻面板外側(cè)豎向受力筋N5彎曲作為墻趾板的受力筋.4. 扶肋扶肋背側(cè)的受拉筋N11,應(yīng)根據(jù)扶肋的彎矩圖,選擇23個截面,鋼筋N11可以多層排列,但不得多于3層,其間距應(yīng)滿足規(guī)范要求,必要時可采用束筋,各層鋼筋上端應(yīng)按不需此鋼筋的截面再延長一個鋼筋錨固長度,必要時可將鋼筋沿橫向彎入墻踵板的底面.除受力鋼筋之外,還需要根據(jù)截面剪力配置箍筋,并按構(gòu)造要求布置構(gòu)造鋼筋.2.4 施工設(shè)計方案比選為了使支擋結(jié)構(gòu)的設(shè)計更加節(jié)約經(jīng)濟(jì),科學(xué)合理,對前面的兩種擋土墻設(shè)計所得進(jìn)行分析比較,選擇一種造價、工程量、施工工藝更為合理的方案作為施工設(shè)計。2. 墻踵板墻踵板頂面橫向水平鋼筋N7,垂直于墻面板方向,其布置與鋼筋N4相同,該鋼筋一端插入墻面板一個鋼筋錨固長度,另一端伸至墻踵端,作為墻踵板縱向鋼筋N8的定位鋼筋,如鋼筋N7的間距很小,可以將其中一半在距墻踵端減一個鋼筋錨固長度處切斷。(3)墻面板與扶肋的U形拉筋連接墻面板與扶肋的U形拉筋N6,其開口向扶肋的背側(cè),該鋼筋每一支承受高度為拉筋間距水平板條的支點剪力Q,在扶肋水平方向通長布置。外側(cè)豎向受力鋼筋N5布置在墻面板的臨空一側(cè),承受墻面板的豎向正彎矩,該鋼筋通長布置,兼作墻面板的分布鋼筋用。此時,故需按最小配筋率進(jìn)行配筋,由以上可知,選配的鋼筋為:。b. 靠近扶肋兩側(cè)L/6部分的彎矩M=MD/2=。a. 跨中2L/3范圍內(nèi)的彎矩M=,代入基本公式得:求得: 查表得選配。以上配筋計算可知,墻面板外側(cè)水平受拉鋼筋N2的分布為:全墻采用14的鋼筋,間距為250mm。代入基本公式計算得: 此時,故需按最小配筋率進(jìn)行配筋,即:查得選配。,此時M=16。查表得:選配。為方便施工,可在扶肋中心切斷,沿墻高可分為幾個 區(qū)段進(jìn)行配筋,但區(qū)段不宜分得太多。由以上的計算可知,墻面板內(nèi)側(cè)的受拉鋼筋分布為:墻頂H
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1