【摘要】基于BP神經(jīng)網(wǎng)絡(luò)的自校正PID控制研究摘要:基于反向傳播BP算法的神經(jīng)網(wǎng)絡(luò)具有很強的學習能力,適應(yīng)能力.本文詳細敘述了BP算法的原理,并將改進的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用在傳統(tǒng)的PID控制中,克服了PID控制在參數(shù)的調(diào)整過程中對于系統(tǒng)模型過分依賴的缺點.利用MATLAB仿真的結(jié)果表明基于BP神經(jīng)網(wǎng)絡(luò)的自校正控制能夠使傳
2024-11-13 23:02
【摘要】基于BP神經(jīng)網(wǎng)絡(luò)的PID控制器設(shè)計中文摘要經(jīng)典PID控制算法作為一般工業(yè)過程控制方法應(yīng)用范圍相當廣泛,原則上講它并不依賴于被控對象的具體數(shù)學模型,但算法參數(shù)的整定卻是一件很困難的工作,更為重要的是即使參數(shù)整定完成,由于參數(shù)不具有自適應(yīng)能力,因環(huán)境的變化,PID控制對系統(tǒng)偏差的響應(yīng)變差,參數(shù)需重新整定。針對上述問題,人們一直采用模糊、神經(jīng)網(wǎng)絡(luò)等各種調(diào)整PID參數(shù)的自適應(yīng)方法,力圖克服這一難
2025-06-26 12:28
【摘要】第三章前饋人工神經(jīng)網(wǎng)絡(luò)--誤差反傳(BP)算法的改進與BP網(wǎng)絡(luò)設(shè)計基于BP算法的多層前饋網(wǎng)絡(luò)模型?三層BP網(wǎng)絡(luò)o1?ok?olW1○Wk○Wl○y1○
2025-01-11 03:16
【摘要】2022/6/221人工神經(jīng)元模擬生物神經(jīng)元的一階特性。輸入:X=(x1,x2,…,xn)聯(lián)接權(quán):W=(w1,w2,…,wn)T網(wǎng)絡(luò)輸入:=∑xiwi向量形式:=XW2022/6/222xnwn∑x1w1x2w2=XW…激活函數(shù)執(zhí)行對該神經(jīng)元所獲得的網(wǎng)
2025-05-31 22:34
【摘要】1研究生課程期終論文課程名稱:神經(jīng)網(wǎng)絡(luò)設(shè)計任課教師:彭洪論文題目:基于遺傳-BP神經(jīng)網(wǎng)絡(luò)的手寫數(shù)字識別姓名:
2025-06-13 07:07
【摘要】基于MATLAB的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用目錄1緒論 1人工神經(jīng)網(wǎng)絡(luò)的研究背景和意義 1神經(jīng)網(wǎng)絡(luò)的發(fā)展與研究現(xiàn)狀 2神經(jīng)網(wǎng)絡(luò)的研究內(nèi)容和目前存在的問題 3神經(jīng)網(wǎng)絡(luò)的應(yīng)用 42神經(jīng)
2025-07-03 18:16
【摘要】——蚊子分類問題?正向傳播:?輸入樣本---輸入層---各隱層---輸出層?判斷是否轉(zhuǎn)入反向傳播階段:?若輸出層的實際輸出與期望的輸出(教師信號)不符?誤差反傳?誤差以某種形式在各層表示----修正各層單元的權(quán)值?網(wǎng)絡(luò)輸出的誤差減少到可接受的程度或達到預(yù)先設(shè)定的學習次數(shù)為止一、BP網(wǎng)絡(luò)的標準
2025-05-31 22:33
【摘要】智能中國網(wǎng)提供學習支持BP神經(jīng)網(wǎng)絡(luò)模型與學習算法概述?Rumelhart,McClelland于1985年提出了BP網(wǎng)絡(luò)的誤差反向后傳BP(BackPropagation)學習算法?BP算法基本原理?利用輸出后的誤差來估計輸出層的直接前導層的誤差,再用這個誤差估計更前一層的誤差,如此一層一層的反
【摘要】神經(jīng)網(wǎng)絡(luò)概述人工神經(jīng)網(wǎng)絡(luò)ANN(artificialneuralwork)是20世紀80年代才日益受到人們重視的一種新的人工智能計算方法。由于它模擬了人腦的思維模式,即具有一定的智能,且的確能解決許多用傳統(tǒng)方法不能或難于解決的復(fù)雜問題,使之更加精確化,如更精確的分類、非線性規(guī)劃的求解、著名的“旅行員推銷問題”的解決等(注:在近年來的實際應(yīng)用
【摘要】1神經(jīng)網(wǎng)絡(luò)與應(yīng)用11月16日2第六章BP網(wǎng)絡(luò)3BP網(wǎng)基本概念?目前實際應(yīng)用中最常用?采用(BackPropagation-BP)學習算法?多層前饋型神經(jīng)網(wǎng)絡(luò)?隱藏層神經(jīng)元傳遞函數(shù)為S型函數(shù)?可以解決非線性問題?用于函數(shù)逼近、模式識別和數(shù)據(jù)壓縮等4BP神經(jīng)元
2025-07-27 23:39
【摘要】1例2-4-1M構(gòu)建線性神經(jīng)網(wǎng)絡(luò)2線性神經(jīng)元結(jié)構(gòu)Matlab用符號書用符號3線性神經(jīng)元結(jié)構(gòu)模型Matlab用符號書用符號)()(1.1npurelinnfabpw
2025-01-11 03:15
【摘要】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學2020年2月28日2020/11/232一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計四、改進BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2020/11/233一、內(nèi)容回顧
2024-10-25 20:05
【摘要】人工神經(jīng)網(wǎng)絡(luò)及其應(yīng)用第4講BP神經(jīng)網(wǎng)絡(luò)何建華電信系,華中科技大學2022年2月28日2022/2/12一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計四、改進BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排2022/2/13一、內(nèi)容回顧
2025-01-14 01:10
【摘要】第五章神經(jīng)網(wǎng)絡(luò)控制前向網(wǎng)絡(luò)及其算法神經(jīng)網(wǎng)絡(luò)的基本原理及結(jié)構(gòu)反饋網(wǎng)絡(luò)神經(jīng)網(wǎng)絡(luò)控制神經(jīng)網(wǎng)絡(luò)的基本原理和結(jié)構(gòu)神經(jīng)元是由細胞體、樹突和軸突組成圖生物神經(jīng)元模型神經(jīng)細胞的結(jié)構(gòu)與功能1神經(jīng)網(wǎng)絡(luò)的基本模型人工神經(jīng)網(wǎng)絡(luò)是對生物神經(jīng)元的一種模擬和簡化,是
2025-01-12 05:19
2025-07-03 18:42