【正文】
quid. (10 分 ) Solution: )(203555144302232323332111fpsvvgvzpgvzp??????????????)( 2332 fpsA Avv ?????)()/( 0 7 5)1020(552)(22222222323223332222p s iftlbgvvzzpgvzpgvzp????????????????????239)(173)(173)020s in(4)(165)(1654)20c os(4)()(2232332222323323322332??????????????????????????????yxbyybybxxbxyybyyyyxxbxxxxFFFlbFFlbvDvFlbFFlbDpvvDvFvvQFFFFvvQFFFF?????????17. An 180mmdiameter pipeline (f=) 150 m long discharges a 60mmdiameter water jet into the atmosphere at a point that is 80 m below the water surface at intake. The entrance to the pipe is reentrant, with ke=, and the nozzle loss coefficient k2=kn=. Find the flow rate and the pressure at B. (15 分 ) Solution: (a) (b) 18. What minimum value of b is necessary to keep the rectangular stone from sliding if it weighs 160 lb/ft3, a=14ft, c=16ft, and the coefficient of friction is ? With this minimum b value, will it also be safe against overturning? Assume that water dose not get underneath the stone block. (10分 ) Solution1: )/(4.)/()150(80991180602222223211121212212222122212222221212022222000smAvQsmvvvvvDDvvgvgvkgvkgvdlfzzhgvzpgvzpeL????????????????????????????????)(586)()22()22(22)/(522221222222222222212k P aPagvkgvvgvkgvvphgvzpgvzpsmvvBBLBBB???????????????????????)( 2 lbBBBaaAhF cww ????????? ?)(1 1 5 lbbBBbb c BfF sf ??????? ? to keep the rectangular stone from sliding, then Since ∴ it is also safe against overturning. 19. A flow is defined by u=2(1+t), v=3(1+t), w=4(1+t). What is the velocity of flow at the point (3,2,4) at t=2? What is the acceleration at that point at t=2? (10 分 ) Solution: At t=2 20. Water flows over the spillway of constant section. Given that y1 = and y2 = , determine the resultant horizontal force on the spillway per meter of spillway width (perpendicular to the spillway section). Assume ideal flow. (10 分 ) )( 1511 52ftbBbBFF wf???wsswwMftlbBbbc BMftlbBBaFM?????????????).().(?12)21(4)1(49)21(3)1(36)21(2)1(2??????????????????twtvtu432???????????????????????????????????????zwwywvxwutwazvwyvvxvutvazuwyuvxuutuazyx222222222222???????????????zyx aaaawvuVSolution: 將 y1 = , y2 = , p1 = p2 , γ =9810 N/m2 , 代入得 解得: v1 = , v2 = To the right 21. Water and oil in an open storage tank. (a) Find the total forces exerted by the fluids on a tank wall, and (b) the location of the center of pressure. (10 分 ) Solution: (a) (b) gvypgvypyvyv22222221112211????????222121??????vvvv)()/(42960)(2981029810)(22)()(221211221112112112kNFFmNBFvvByvByyByyFvvByvFFFvvQFbbbbxxx????????????????????????????????39。已知管徑 d=50 mm, AB 段長度 LAB = m,流量 qv = 15 m3/h,沿程阻力系數(shù) λ =,兩測壓管中的水柱高度差 Δ h = 20 mm,求彎頭的局部阻力系 數(shù) ξ 。 解:由連續(xù)方程: 得: 選彎管所圍成的體積為控制體,對(duì)控制體列 x 方向動(dòng)量方程: 14. 為測定 90186。彎管轉(zhuǎn)向水平方向流動(dòng)。( 15 分) 解:設(shè) FD = f (D, v, ρ ,μ ) 選 D、 v、ρ 為基本變量 上述方程的量綱方程為: 由量綱一致性原則,可求得: a1=1 a2=1 b1=2 b2=1 c1=2 c2=1 ∴ 12. 如圖所示,一封閉容器內(nèi)盛有 油和水,油層厚 h1=40 cm,油的密度 ρ o=850 kg/m3,盛有水銀的 U 形測壓管的液面距水面的深度 h2=60 cm,水銀柱的高度低于油面 h=50 cm,水銀的密度 ρ hg= 13600 kg/m3,試求油面上的計(jì)示壓強(qiáng)( 15 分)。 解:由連續(xù)方程: 由能量方程: X 方向動(dòng)量方程: Y 方向動(dòng)量方程: 合力為 : 11. 小球在不可壓縮粘性流體中運(yùn)動(dòng)的阻力 FD 與小球的直徑 D、等速運(yùn)動(dòng)的速度 v、流體的)(1 5 0 011 5 0 02222Nkkk FFFFkkkklvmppmlvF?????????)/()( 21222121122211smvddAAvvAvAv??????)(21725)(2)(222224222112222211Pavvppgvgpgvgpeeee??????????????)(42 1 7 2 5)010(4 0 0 0)()(2222122212NApvvqFApFvvqexxvxexxxv????????????????????)(4)(4)()(24211121112NApvvqFApFvvqeyyvyeyyyv?????????????????????)( 4 2 3 2 2222 NFFF yx ?????密度 ρ 、動(dòng)力粘度 μ 有關(guān),試導(dǎo)出阻力的表達(dá)式 。漸縮彎管放在水平面上,管 徑 d1=15 cm, d2= cm,入口處水平均流速 v1= m/s,靜壓 p1e= 104 Pa(計(jì)示壓強(qiáng))。在該風(fēng)速下測得模型的風(fēng)阻力為 1500N,試求原型在最大行駛速度時(shí)的風(fēng)阻。 解:( 1)上半球固定在支座上時(shí) ( 2)下半球固定在支座上時(shí) 9. 新設(shè)計(jì)的汽車高 ,最大行駛速度為 108km/h,擬在風(fēng)洞中進(jìn)行模型試驗(yàn)。當(dāng)測壓管讀數(shù) H=3m時(shí),不計(jì)球的自重,求下列兩種情況下螺栓群 AA 所受的拉力。 ( dimΔ P =ML1T2, dimμ =ML1T1)。模型與實(shí)物的比例尺為 1/3,已知實(shí)際情況下魚雷速度 vp=6 km/h,海水密度ρ p=1200 kg/m3,粘度ν p= 106 m2/s,空氣的密度 ρm= kg/m3,粘度νm= 105 m2/s,試求:( 1)風(fēng)洞中的模擬速度應(yīng)為多大?( 2)若在風(fēng)洞中測得模型阻力為 1000N,則實(shí)際阻力為多少?