freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx全國(guó)各地中考數(shù)學(xué)分類:二次函數(shù)綜合題匯編-文庫(kù)吧資料

2025-03-30 22:22本頁(yè)面
  

【正文】 ∴F(1,).【點(diǎn)睛】此題考查了待定系數(shù)法求解析式,還考查了用函數(shù)思想求極值等,解題關(guān)鍵是能夠判斷出當(dāng)平行四邊形MANB的面積最大時(shí),△ABM的面積最大,且此時(shí)線段MK的長(zhǎng)度也最大.13.在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+x+c的圖象經(jīng)過(guò)點(diǎn)C(0,2)和點(diǎn)D(4,﹣2).點(diǎn)E是直線y=﹣x+2與二次函數(shù)圖象在第一象限內(nèi)的交點(diǎn).(1)求二次函數(shù)的解析式及點(diǎn)E的坐標(biāo).(2)如圖①,若點(diǎn)M是二次函數(shù)圖象上的點(diǎn),且在直線CE的上方,連接MC,OE,ME.求四邊形COEM面積的最大值及此時(shí)點(diǎn)M的坐標(biāo).(3)如圖②,經(jīng)過(guò)A、B、C三點(diǎn)的圓交y軸于點(diǎn)F,求點(diǎn)F的坐標(biāo).【答案】(1)E(3,1);(2)S最大=,M坐標(biāo)為(,3);(3)F坐標(biāo)為(0,﹣).【解析】【分析】1)把C與D坐標(biāo)代入二次函數(shù)解析式求出a與c的值,確定出二次函數(shù)解析式,與一次函數(shù)解析式聯(lián)立求出E坐標(biāo)即可;(2)過(guò)M作MH垂直于x軸,與直線CE交于點(diǎn)H,四邊形COEM面積最大即為三角形CME面積最大,構(gòu)造出二次函數(shù)求出最大值,并求出此時(shí)M坐標(biāo)即可;(3)令y=0,求出x的值,得出A與B坐標(biāo),由圓周角定理及相似的性質(zhì)得到三角形AOC與三角形BOF相似,由相似得比例求出OF的長(zhǎng),即可確定出F坐標(biāo).【詳解】(1)把C(0,2),D(4,﹣2)代入二次函數(shù)解析式得: ,解得: ,即二次函數(shù)解析式為y=﹣x2+x+2,聯(lián)立一次函數(shù)解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,則E(3,1);(2)如圖①,過(guò)M作MH∥y軸,交CE于點(diǎn)H,設(shè)M(m,﹣m2+m+2),則H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四邊形COEM=S△OCE+S△CME=23+MH?3=﹣m2+3m+3,當(dāng)m=﹣=時(shí),S最大=,此時(shí)M坐標(biāo)為(,3);(3)連接BF,如圖②所示,當(dāng)﹣x2+x+20=0時(shí),x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴ ,即 ,解得:OF=,則F坐標(biāo)為(0,﹣).【點(diǎn)睛】此題屬于二次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法求二次函數(shù)解析式,相似三角形的判定與性質(zhì),三角形的面積,二次函數(shù)圖象與性質(zhì),以及圖形與坐標(biāo)性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.14.如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+x﹣2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,直線l經(jīng)過(guò)A,C兩點(diǎn),連接BC.(1)求直線l的解析式;(2)若直線x=m(m<0)與該拋物線在第三象限內(nèi)交于點(diǎn)E,與直線l交于點(diǎn)D,連接OD.當(dāng)OD⊥AC時(shí),求線段DE的長(zhǎng);(3)取點(diǎn)G(0,﹣1),連接AG,在第一象限內(nèi)的拋物線上,是否存在點(diǎn)P,使∠BAP=∠BCO﹣∠BAG?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】(1)y=;(2)DE=;(3)存在點(diǎn)P(,),使∠BAP=∠BCO﹣∠BAG,理由見(jiàn)解析.【解析】【分析】(1)根據(jù)題目中的函數(shù)解析式可以求得點(diǎn)A和點(diǎn)C的坐標(biāo),從而可以求得直線l的函數(shù)解析式;(2)根據(jù)題意作出合適的輔助線,利用三角形相似和勾股定理可以解答本題;(3)根據(jù)題意畫(huà)出相應(yīng)的圖形,然后根據(jù)銳角三角函數(shù)可以求得∠OAC=∠OCB,然后根據(jù)題目中的條件和圖形,利用銳角三角函數(shù)和勾股定理即可解答本題.【詳解】(1)∵拋物線y=x2+x2,∴當(dāng)y=0時(shí),得x1=1,x2=4,當(dāng)x=0時(shí),y=2,∵拋物線y=x2+x2與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,∴點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)B(1,0),點(diǎn)C(0,2),∵直線l經(jīng)過(guò)A,C兩點(diǎn),設(shè)直線l的函數(shù)解析式為y=kx+b,得,即直線l的函數(shù)解析式為y=?x?2; (2)直線ED與x軸交于點(diǎn)F,如圖1所示,由(1)可得,AO=4,OC=2,∠AOC=90176。然后分點(diǎn)N的縱坐標(biāo)為和點(diǎn)N的縱坐標(biāo)為兩種情況分別求解;以BD為對(duì)角線時(shí),有1種情況,此時(shí)N1點(diǎn)與N2點(diǎn)重合,根據(jù)平行四邊形的對(duì)邊平行且相等可求得BM1=N1D=4,繼而求得OM1= 8,由此即可求得答案.【詳解】(1)拋物線經(jīng)過(guò)點(diǎn)A(2,0),B(4,0),∴,解得,∴拋物線的函數(shù)表達(dá)式為;(2)作直線DE⊥軸于點(diǎn)E,交BC于點(diǎn)G,作CF⊥DE,垂足為F,∵點(diǎn)A的坐標(biāo)為(2,0),∴OA=2,由,得,∴點(diǎn)C的坐標(biāo)為(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD =,設(shè)直線BC的函數(shù)表達(dá)式為,由B,C兩點(diǎn)的坐標(biāo)得,解得,∴直線BC的函數(shù)表達(dá)式為,∴點(diǎn)G的坐標(biāo)為,∴,∵點(diǎn)B的坐標(biāo)為(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD =,∴,解得(舍),∴的值為3;(3)存在,如下圖所示,以BD為邊或者以BD為對(duì)角線進(jìn)行平行四邊形的構(gòu)圖,以BD為邊時(shí),有3種情況,∵D點(diǎn)坐標(biāo)為,∴點(diǎn)N點(diǎn)縱坐標(biāo)為177。若△PDE為等腰直角三角形,則∠EDP=45176?!郉H∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45176。知若△PDE為等腰直角三角形,則∠EDP=45176。1,∴P(1,-3,)或(-1,1).綜上所述:P(1,1)或P(-1,-3)或P(1,-3,)或(-1,1).點(diǎn)睛:本題是二次函數(shù)綜合題.考查了二次函數(shù)的性質(zhì)以及“拋物線三角形”的定義.解題的關(guān)鍵是弄懂“拋物線三角形”的定義以及分類討論.8.已知:如圖,拋物線y=ax2+bx+c與坐標(biāo)軸分別交于點(diǎn)A(0,6),B(6,0),C(﹣2,0),點(diǎn)P是線段AB上方拋物線上的一個(gè)動(dòng)點(diǎn).(1)求拋物線的解析式;(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PAB的面積有最大值?(3)過(guò)點(diǎn)P作x軸的垂線,交線段AB于點(diǎn)D,再過(guò)點(diǎn)P做PE∥x軸交拋物線于點(diǎn)E,連結(jié)DE,請(qǐng)問(wèn)是否存在點(diǎn)P使△PDE為等腰直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當(dāng)t=3時(shí),△PAB的面積有最大值;(3)點(diǎn)P(4,6).【解析】【分析】(1)利用待定系數(shù)法進(jìn)行求解即可得;(2)作PM⊥OB與點(diǎn)M,交AB于點(diǎn)N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設(shè)P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達(dá)式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45176。1,∴y=-x2+2x 或y=-x2-2x.(4)①當(dāng)拋物線為y=-x2+2x 時(shí).∵△AOB為等腰直角三角形,且△BPQ∽△OAB,∴△BPQ為等腰直角三角形,設(shè)P(a,-a2+2a),∴Q((a,0),則|-a2+2a|=|2-a|,即.∵a-2≠0,∴,∴a=177。,∴∠FPA=∠BAE又∠PFA=∠AEB=90176?!唷鱌FD∽△BOC,∴,由(1)得:OC=3,OB=4,BC=5,故△BOC的周長(zhǎng)
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1