freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx中考數(shù)學壓軸題之平行四邊形(中考題型整理-突破提升)附詳細答案-文庫吧資料

2025-03-30 22:21本頁面
  

【正文】 如3所示:∵AG=,AD=9,∴GD=9,∵四邊形ABCD是矩形,∴AD∥BC,BC=AD=9,∴∠DGF=∠BFG,由翻折不變性可知,∠BFG=∠DFG,∴∠DFG=∠DGF,∴DF=DG=, ∵CD=AB=4,∠C=90176。(Ⅱ)當O,P,F點共線時OP的長度最短.【詳解】解:(I)①∵折痕為EF,點P為點D的對應點∵四邊形OBCD是矩形,點F的坐標為②∵折痕為EF,點P為點D的對應點.∵四邊形OBCD是矩形,;∴四邊形DEPF是平行四邊形.,是菱形. 設菱形的邊長為x,則,在中,由勾股定理得 解得 ∴點F的坐標為 (Ⅱ)【點睛】此題考查了幾何折疊問題、等腰三角形的性質、平行四邊形的判定和性質、勾股定理等知識,關鍵是根據(jù)折疊的性質進行解答,屬于中考壓軸題.5.已知,點是的角平分線上的任意一點,現(xiàn)有一個直角繞點旋轉,兩直角邊,分別與直線,相交于點,點.(1)如圖1,若,猜想線段,之間的數(shù)量關系,并說明理由.(2)如圖2,若點在射線上,且與不垂直,則(1)中的數(shù)量關系是否仍成立?如成立,請說明理由;如不成立,請寫出線段,之間的數(shù)量關系,并加以證明.(3)如圖3,若點在射線的反向延長線上,且,請直接寫出線段的長度.【答案】(1)詳見解析;(2)詳見解析;(3)【解析】【分析】(1)先證四邊形為矩形,再證矩形為正方形,由正方形性質可得;(2)過點作于點,于點,證四邊形為正方形,再證,可得;(3)根據(jù),可得.【詳解】解:(1)∵,∴四邊形為矩形.∵是的角平分線,∴,∴,∴矩形為正方形,∴,.∴.(2)如圖,過點作于點,于點,∵平分,∴四邊形為正方形,由(1)得:,在和中,∴,∴,∴.(3),∴.∵,∴,∴,∴,的長度為.【點睛】考核知識點:矩形,.6.(1)如圖1,將矩形折疊,使落在對角線上,折痕為,點落在點處,若,則的度數(shù)為______.(2)小明手中有一張矩形紙片,.(畫一畫)如圖2,點在這張矩形紙片的邊上,將紙片折疊,使落在所在直線上,折痕設為(點,分別在邊,上),利用直尺和圓規(guī)畫出折痕(不寫作法,保留作圖痕跡,并用黑色水筆把線段描清楚);(算一算)如圖3,點在這張矩形紙片的邊上,將紙片折疊,使落在射線上,折痕為,點分別落在點,處,若,求的長.【答案】(1)21;(2)畫一畫;見解析;算一算:【解析】【分析】(1)利用平行線的性質以及翻折不變性即可解決問題;(2)【畫一畫】,如圖2中,延長BA交CE的延長線由G,作∠BGC的角平分線交AD于M,交BC于N,直線MN即為所求;【算一算】首先求出GD=9,由矩形的性質得出AD∥BC,BC=AD=9,由平行線的性質得出∠DGF=∠BFG,由翻折不變性可知,∠BFG=∠DFG,證出∠DFG=∠DGF,由等腰三角形的判定定理證出DF=DG=,再由勾股定理求出CF,可得BF,再利用翻折不變性,可知FB′=FB,由此即可解決問題.【詳解】(1)如圖1所示:∵四邊形ABCD是矩形,∴AD∥BC,∴∠ADB=∠DBC=42176。 【答案】(I)①點F的坐標為;②點F的坐標為;(II)【解析】【分析】(I)①根據(jù)折疊的性質可得,再由矩形的性質,即可求出F的坐標。.進而根據(jù)正方形的判定方法,可以判斷出四邊形FGCH是正方形.實踐探究(1)正方形FGCH的面積是 ;(用含a, b的式子表示)(2)類比圖1的剪拼方法,請你就圖2—圖4的三種情形分別畫出剪拼成一個新正方形的示意圖.聯(lián)想拓展小明通過探究后發(fā)現(xiàn):當b≤a時,此類圖形都能剪拼成正方形,且所選取的點G的位置在BA方向上隨著b的增大不斷上移.當b>a時(如圖5),能否剪拼成一個正方形?若能,請你在圖5中畫出剪拼成的正方形的示意圖;若不能,簡要說明理由.【答案】(1)a2+b2;(2)見解析;聯(lián)想拓展:.【解析】分析:實踐探究:根據(jù)正方形FGCH的面積=BG2+BC2進而得出答案;應采用類比的方法,注意無論等腰直角三角形的大小如何變化,BG永遠等于等腰直角三角形斜邊的一半.注意當b=a時,也可直接沿正方形的對角線分割.詳解:實踐探究:正方形的面積是:BG2+BC2=a2+b2;剪拼方法如圖2圖4;聯(lián)想拓展:能,剪拼方法如圖5(圖中BG=DH=b)..點睛:本題考查了幾何變換綜合,培養(yǎng)學生的推理論證能力和動手操作能力;運用類比方法作圖時,應根據(jù)范例抓住作圖的關鍵:作的線段的長度與某條線段的比值永遠相等,旋轉的三角形,連接的點都應是相同的.4.已知矩形紙片OBCD的邊OB在x軸上,OD在y軸上,點C在第一象限,折痕為EF(點E,F(xiàn)是折痕與矩形的邊的交點),點P為點D的對應點,再將紙片還原。到△FEH的位置,易知EH與AD在同一直線上.連結CH,由剪拼方法可得DH=BG,故△CHD≌△CGB,從而又可將△CGB繞點C順時針旋轉90176。由(2)可知x2﹣bx+a2=0,∵b<2a,a>0,b>0,∴△=b2﹣4a2<0,∴方程沒有實數(shù)根,∴當b<2a時,不存在∠BMC=90176?!唷鰽BM∽△DMC,∴,設AM=x,則,整理得:x2﹣bx+a2=0,∵b>2a,a>0,b>0,∴△=b2﹣4a2>0,∴方程有兩個不相等的實數(shù)根,且兩根均大于零,符合題意,∴當b>2a時,存在∠BMC=90176。又∵∠AMB+∠ABM=90176。.(2)存在,理由:若∠BMC=90176。∴∠AMB=∠DMC=45176。;(2)
點擊復制文檔內容
化學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1