freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

二次根式的化簡教學(xué)設(shè)計(jì)2(參考版)

2024-11-04 17:10本頁面
  

【正文】 。在教學(xué)過程中讓學(xué)生感受到研究二次根式是實(shí)際的需要,體會到數(shù)學(xué)與實(shí)際生活間的緊密聯(lián)系,以此充分激發(fā)學(xué)生學(xué)習(xí)的興趣。2.二次根式有意義的條件被開方數(shù)(式)為非負(fù)數(shù);有意義?a≥0。解:(1)=1+-=1;(2)=1+-=1(n為正整數(shù)).方法總結(jié):解答規(guī)律探究性問題,都要通過仔細(xì)觀察找出字母和數(shù)之間的關(guān)系,通過閱讀找出題目隱含條件并用關(guān)系式表示出來。①=1+-=1;②=1+-=1;③=1+-=1.(1)請你根據(jù)上面三個(gè)等式提供的信息,寫出的結(jié)果;(2)請你按照上面各等式反映的規(guī)律,試寫出用含n的式子表示的等式(n為正整數(shù))。方法總結(jié):二次根式和絕對值都具有非負(fù)性,幾個(gè)非負(fù)數(shù)的和為0,這幾個(gè)非負(fù)數(shù)都為0。8,∴yx的`平方根為177。解:(1)根據(jù)題意得解得則(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;(2)根據(jù)題意得解得x==4,故yx=43=64,177。類型二 利用二次根式的非負(fù)性求解(1)已知a、b滿足+|b-|=0,解關(guān)于x的方程(a+2)x+b2=a-1;(2)已知x、y都是實(shí)數(shù),且y=++4,求yx的平方根。解:(1)由題意得4-3x>0,解得x<.當(dāng)x<時(shí),有意義;(2)由題意得解得x≤3且x≠≤3且x≠2時(shí),有意義;(3)由題意得解得x≥-5且x≠≥-5且x≠0時(shí),有意義。探究點(diǎn)二:二次根式有意義的條件類型一 根據(jù)二次根式有意義求字母的取值范圍求使下列式子有意義的x的取值范圍。解:因?yàn)閤x=,(x≤3),(ab≥0)中的根指數(shù)都是2,且被開方數(shù)為非負(fù)數(shù),所以都是二次根式的根指數(shù)不是2,(x≥0),的被開方數(shù)小于0,所以不是二次根式。(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與落下的高度h(單位:m)滿足關(guān)系h=5t2,如果用含有h的式子表示t,則t=xx。我們知道如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方形式了.(三)小結(jié)1.繼續(xù)鞏固二次根式的定義,及二次根式中被開方數(shù)的取值范圍問題.2.關(guān)于公式的應(yīng)用。將符號“”看作開平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:這里需要注意的是公式成立的條件是a≥0,提問學(xué)生,a可以代表一個(gè)代數(shù)式嗎?請分析:引導(dǎo)學(xué)生答如時(shí)才成立。四、教學(xué)準(zhǔn)備:課件五、教學(xué)過程(一)復(fù)習(xí)提問1.什么叫二次根式?2.下列各式是二次根式,求式子中的字母所滿足的條件:(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).(二)二次根式的簡單性質(zhì)上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡單性質(zhì)我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。二、教學(xué)重點(diǎn):二次根式成立的條件,雙重非負(fù)性;用性質(zhì)進(jìn)行計(jì)算。(二)過程與方法:體驗(yàn)性質(zhì)的推導(dǎo)過程,感受由特殊到一般的方法。那要怎么寫好教學(xué)設(shè)計(jì)呢?以下是小編精心整理的二次根式教學(xué)設(shè)計(jì)(通用5篇),希望對大家有所幫助。難點(diǎn)下面例題根據(jù)二次根式定義,由學(xué)生分析、回答。對于 請同學(xué)們討論論應(yīng)注意的問題,引導(dǎo)學(xué)生總結(jié):(1)式子 只有在條件a0時(shí)才叫二次根式, 是二次根式嗎?若根式中含有字母必須保證根號下式子大于等于零,因此字母范圍的限制也是根式的一部分。觀察上面幾個(gè)式子的特點(diǎn),引導(dǎo)學(xué)生總結(jié)它們的被平方數(shù)都大于或等于零,其中 ,表示的是算術(shù)平方根。三、教學(xué)方法啟發(fā)式、講練結(jié)合。(2)二次根式中字母的取值范圍。5. 通過二次根式性質(zhì) 和 的介紹滲透對稱性、規(guī)律性的數(shù)學(xué)美。3. 掌握二次根式的性質(zhì) 和 ,并能靈活應(yīng)用。篇7:二次根式教學(xué)設(shè)計(jì)一、教學(xué)目標(biāo)。通過將新知識與舊知識進(jìn)行聯(lián)系與對比,隨后由學(xué)生熟悉的實(shí)際問題出發(fā),用已有的知識進(jìn)行探究,由此引入二次根式。三、板書設(shè)計(jì)1.二次根式的定義一般地,我們把形如(a≥0)的式子叫做二次根式。解析:(1)從三個(gè)等式中可以發(fā)現(xiàn),等號右邊第一個(gè)加數(shù)都是1,第二個(gè)加數(shù)是個(gè)分?jǐn)?shù),設(shè)分母為n,第三個(gè)分?jǐn)?shù)的分母就是n+1,結(jié)果是一個(gè)帶分?jǐn)?shù),整數(shù)部分是1,分?jǐn)?shù)部分的分子也是1,分母是前項(xiàng)分?jǐn)?shù)的分母的積;(2)根據(jù)(1)找的規(guī)律寫出表示這個(gè)規(guī)律的式子。探究點(diǎn)三:和二次根式有關(guān)的規(guī)律探究性問題先觀察下列等式,再回答下列問題。8。=177。解析:(1)根據(jù)二次根式的非負(fù)性和絕對值的非負(fù)性求解即可;(2)根據(jù)二次根式的非負(fù)性即可求得x的值,進(jìn)而求得y的值,進(jìn)而可求出yx的平方根。方法總結(jié):含二次根式的式子有意義的條件:(1)如果一個(gè)式子中含有多個(gè)二次根式,那么它們有意義的條件是各個(gè)二次根式中的被開方數(shù)都必須是非負(fù)數(shù);(2)如果所給式子中含有分母,則除了保證二次根式中的被開方數(shù)為非負(fù)數(shù)外,還必須保證分母不為零。解析:根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0且分母不等于0,列不等式(組)求解。方法總結(jié):判斷一個(gè)式子是不是二次根式,要看所給的式子是否具備以下條件:(1)帶二次根號;(2)被開方數(shù)是非負(fù)數(shù)。問題2:上面得到的式子,分別表示什么意義?它們有什么共同特征?二、合作探究探究點(diǎn)一:二次根式的定義下列各式中,哪些是二次根式,哪些不是二次根式?解析:要判斷一個(gè)根式是不是二次根式,一是看根指數(shù)是不是2,二是看被開方數(shù)是不是非負(fù)數(shù)。(1)經(jīng)常用于乘法的運(yùn)算中.(2)可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問題.篇6:二次根式教學(xué)設(shè)計(jì)一、情境導(dǎo)入問題1:你能用帶有根號的式子填空嗎?(1)面積為3的正方形的邊長為xx,面積為S的正方形的邊長為xx(2)一個(gè)長方形圍欄,長是寬的2倍,面積為130m2,則它的寬為xxm。時(shí)才成立,即a取任意實(shí)數(shù)時(shí)都成立。引導(dǎo)學(xué)生總結(jié)出,其中,就是一個(gè)非負(fù)數(shù)a的算術(shù)平方根。三、教學(xué)難點(diǎn)性質(zhì)的逆用。(三)情感態(tài)度:激發(fā)對數(shù)學(xué)的興趣。(1)經(jīng)常用于乘法的運(yùn)算中.(2)可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方的形式,解決在實(shí)數(shù)范圍內(nèi)因式分解等方面的問題.(四)練習(xí)和作業(yè)練習(xí):1.填空注意第(4)題需有2m≥0,m≥0,又需有3m≥0,即m≤0,故m=0.2.實(shí)數(shù)a、b在數(shù)軸上對應(yīng)點(diǎn)的位置如下圖所示:分析:通過本題滲透數(shù)形結(jié)合的思想,進(jìn)一步鞏固二次根式的定義、性質(zhì),引導(dǎo)學(xué)生分析:由于a<0,b>0,且|a|>|b|.3.計(jì)算二、作業(yè)教材P.172習(xí)題11.1;A組3;B組2.補(bǔ)充作業(yè):下列各式中的字母滿足什么條件時(shí),才能使該式成為二次根式?分析:要使這些式成為二次根式,只要被開方式是非負(fù)數(shù)即可,啟發(fā)學(xué)生分析如下:(1)由|a2b|≥0,得a2b≤0,但根據(jù)絕對值的性質(zhì),有|a2b|≥0,∴|a2b|=0,即a2b=0,得a=2b.(2)由(m21)(mn)≥0,(m2+1)(mn)≥0∴(m2+1)(mn)≤0,又m2+1>0,∴mn≤0,即m≤n.篇5:二次根式教學(xué)設(shè)計(jì)一、教學(xué)目標(biāo):(一)知識與技能:,會確定二次根式成立的條件。因此,以后遇到,應(yīng)寫成,而不宜寫成。我們知道如果我們把,同學(xué)們想一想是否就可以把任何一個(gè)非負(fù)數(shù)寫成一個(gè)數(shù)的平方形式了.例1計(jì)算:分析:這個(gè)例題中的四個(gè)小題,主要是運(yùn)用公式。將符號“”看作開平方求算術(shù)平方根的運(yùn)算,看作將一個(gè)數(shù)進(jìn)行平方的運(yùn)算,而開平方運(yùn)算和平方運(yùn)算是互為逆運(yùn)算,因而有:這里需要注意的是公式成立的條件是a≥0,提問學(xué)生,a可以代表一個(gè)代數(shù)式嗎?請分析:引導(dǎo)學(xué)生答如時(shí)才成立。四、教學(xué)準(zhǔn)備:課件五、教學(xué)過程(一)復(fù)習(xí)提問1.什么叫二次根式?2.下列各式是二次根式,求式子中的字母所滿足的條件:(3)∵x取任何值都有2x2≥0,所以2x2+1>0,故x的取值為任意實(shí)數(shù).(二)二次根式的簡單性質(zhì)上節(jié)課我們已經(jīng)學(xué)習(xí)了二次根式的定義,并了解了第一個(gè)簡單性質(zhì)我們知道,正數(shù)a有兩個(gè)平方根,分別記作零的平方根是零。二、教學(xué)重點(diǎn):二次根式成立的條件,雙重非負(fù)性;用性質(zhì)進(jìn)行計(jì)算。(二)過程與方法:體驗(yàn)性質(zhì)的推導(dǎo)過程,感受由特殊到一般的方法。三、重點(diǎn)難點(diǎn)教學(xué)重點(diǎn)為了解二次根式的概念,知道被開方數(shù)必須是非負(fù)數(shù)的理由,知道二次根式本身是一個(gè)非負(fù)數(shù),會求二次根式中被開方數(shù)字母的取值范圍.教學(xué)難點(diǎn)為:理解二次根式的雙重非負(fù)性、四、教學(xué)過程活動1【導(dǎo)入】活動一問題1你能用帶有根號的的式子填空嗎?(1)面積為3的正方形的邊長為_______,面積為S的正方形的邊長為_______.(2)一個(gè)長方形圍欄,長是寬的2倍,面積為130m?,則它的寬為______m.(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與開始落下的高度h(單位:m)滿足關(guān)系h =5t?,如果用含有h的式子表示t,則t= _____.師生活動:學(xué)生獨(dú)立完成上述問題,用算術(shù)平方根表示結(jié)果,教師進(jìn)行適當(dāng)引導(dǎo)和評價(jià)。二、學(xué)情分析學(xué)生已經(jīng)學(xué)習(xí)了“整式”、“平方根”、“算術(shù)平方根”等知識,已經(jīng)具備了學(xué)習(xí)二次根式的知識基礎(chǔ)和心理基礎(chǔ),但學(xué)生剛認(rèn)識二次根式,學(xué)習(xí)將有一定難度。理解二次根式的基本性質(zhì)。8,∴yx的平方根為177。2.化簡:(1) ; (2) ; (3)六、作業(yè)教材P.183習(xí)題11.3;A組1.七、板書設(shè)計(jì)二次根式教學(xué)設(shè)計(jì)91.能用二次根式表示實(shí)際問題中的數(shù)量及數(shù)量關(guān)系,體會研究二次根式的必要性;(難點(diǎn))2.能根據(jù)算術(shù)平方根的意義了解二次根式的概念及性質(zhì),會求二次根式中被開方數(shù)中字母的取值范圍.(重點(diǎn))一、情境導(dǎo)入問題1:你能用帶有根號的式子填空嗎?(1)面積為3的正方形的邊長為________,面積為S的正方形的邊長為________.(2)一個(gè)長方形圍欄,長是寬的2倍,面積為130m2,則它的寬為________m.(3)一個(gè)物體從高處自由落下,落到地面所用的時(shí)間t(單位:s)與落下的高度h(單位:m)滿足關(guān)系h=5t2,如果用含有h的式子表示t,則t=______.問題2:上面得到的式子,分別表示什么意義?它們有什么共同特征?二、合作探究探究點(diǎn)一:二次根式的定義下列各式中,哪些是二次根式,哪些不是二次根式?(1);(2);(3);(4);(5);(6)(x≤3);(7)(x≥0);(8);(9);(10)(ab≥0).解析:要判斷一個(gè)根式是不是二次根式,一是看根指數(shù)是不是2,二是看被開方數(shù)是不是非負(fù)數(shù).解:因?yàn)?,=?x≤3),(ab≥0)中的根指數(shù)都是2,且被開方數(shù)為非負(fù)數(shù),(x≥0),的被開方數(shù)小于0,所以不是二次根式.方法總結(jié):判斷一個(gè)式子是不是二次根式,要看所給的式子是否具備以下條件:(1)帶二次根號“”;(2)被開方數(shù)是非負(fù)數(shù).探究點(diǎn)二:二次根式有意義的條件【類型一】 根據(jù)二次根式有意義求字母的取值范圍求使下列式子有意義的x的取值范圍.(1);(2);(3).解析:根據(jù)二次根式的性質(zhì)和分式的意義,被開方數(shù)大于或等于0且分母不等于0,列不等式(組)求解.解:(1)由題意得4-3x>0,解得x<.當(dāng)x<時(shí),有意義;(2)由題意得解得x≤3且x≠≤3且x≠2時(shí),有意義;(3)由題意得解得x≥-5且x≠≥-5且x≠0時(shí),有意義.方法總結(jié):含二次根式的式子有意義的條件:(1)如果一個(gè)式子中含有多個(gè)二次根式,那么它們有意義的條件是各個(gè)二次根式中的被開方數(shù)都必須是非負(fù)數(shù);(2)如果所給式子中含有分母,則除了保證二次根式中的被開方數(shù)為非負(fù)數(shù)外,還必須保證分母不為零.【類型二】 利用二次根式的非負(fù)性求解(1)已知a、b滿足+|b-|=0,解關(guān)于x的方程(a+2)x+b2=a-1;(2)已知x、y都是實(shí)數(shù),且y=++4,求yx的平方根.解析:(1)根據(jù)二次根式的非負(fù)性和絕對值的非負(fù)性求解即可;(2)根據(jù)二次根式的非負(fù)性即可求得x的值,進(jìn)而求得y的值,進(jìn)而可求出yx的平方根.解:(1)根據(jù)題意得解得則(a+2)x+b2=a-1,即-2x+3=-5,解得x=4;(2)根據(jù)題意得解得x==4,故yx=43=64,177。例2 化簡:(1) ; (2) ;解:(1)(2)讓學(xué)生觀察例題中分母的特點(diǎn),然后提出, 的問題怎樣解決?再總結(jié):這一小節(jié)開始講的二次根式的化簡,只限于所得結(jié)果的式子中分母可以完全開的盡方的情況, 的問題,我們將在今后的學(xué)習(xí)中解決。 通過分母有理化的教學(xué),滲透數(shù)學(xué)的簡潔性。 培養(yǎng)學(xué)生利用公式進(jìn)行化簡與計(jì)算的能力;5。教學(xué)設(shè)計(jì)示例一、教學(xué)目標(biāo)1.掌握商的算術(shù)平方根的性質(zhì),能利用性質(zhì)進(jìn)行二次根式的化簡與運(yùn)算;2.會進(jìn)行簡單的運(yùn)算。3。 本節(jié)內(nèi)容可以分為三課時(shí),第一課時(shí)討論商的算術(shù)平方根的性質(zhì),并運(yùn)用這一性質(zhì)化簡較簡單的二次根式(被開方數(shù)的分母可以開得盡方的二次根式);第二課時(shí)討論法則,并運(yùn)用這一法則進(jìn)行簡單的運(yùn)算以及二次根式的乘除混合運(yùn)算,這一課時(shí)運(yùn)算結(jié)果不包括根號出現(xiàn)內(nèi)出現(xiàn)分式或分?jǐn)?shù)的情況;第三課時(shí)討論分母有理化的概念及方法,并進(jìn)行二次根式的乘除法運(yùn)算,把運(yùn)算結(jié)果分母有理化。教師在此過程當(dāng)中給與適當(dāng)?shù)闹笇?dǎo),提出問題讓學(xué)生有一定的探索方向。教法建議:1。與乘法既有聯(lián)系又有區(qū)別,強(qiáng)調(diào)根式除法結(jié)果的一般形式,避免分母上含有根號。商的算術(shù)平方根的性質(zhì)是本節(jié)的主線,學(xué)生掌握性質(zhì)在二次根使得化簡和運(yùn)算的運(yùn)用是關(guān)鍵,從化簡與運(yùn)算由引出初中重要的內(nèi)容之一分母有理化,分母有理化的理解決定了最簡二次根式化簡的掌握。三、鞏固練習(xí)1.把下列各式化成最簡二次根式:2.判斷下列各根式,哪些是最簡二次根式?哪些不是最簡二次根式?如果不是,把它化成最簡二次根式。當(dāng)被開方數(shù)是分?jǐn)?shù)或分式時(shí),根據(jù)分式的基本性質(zhì)和商的算術(shù)平方根的性質(zhì)化去分母。第(2)條說明被開方數(shù)中每
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1