【正文】
參考文獻(xiàn)[1] ,et image registration by maximization of mutual information[J].IEEE Transactions on Medical Imaging,1997,16(2):187198.[2] , information based registration of medical images:a survey[J].IEEE Transactions On Medical Imaging,2003,22(8):9861004.[3] ,Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information[J].Medical Image ,3(4):373386.[4] , , , An overlap invariant entropy measure of 3D medical image alignment[J]. Pattern Recognition, 1999, 32(1):7186.[5] 嚴(yán)峻. 一種改進(jìn)的基于成熟前收斂判斷的自適應(yīng)遺傳算法[J]. 南京郵電學(xué)院學(xué)報(bào),1993,19(1):3538.[6] 樊叔維,汪國(guó)梁,謝衛(wèi). 遺傳算法在電力變壓器優(yōu)化設(shè)計(jì)中的應(yīng)用研究[J]. 中國(guó)電機(jī)工程學(xué)報(bào),1996,16(5):346348.[7] 劉志剛,耿英三,王建華等. 基于改進(jìn)自適應(yīng)遺傳算法的空心串聯(lián)電抗器優(yōu)化設(shè)計(jì)[J].中國(guó)電機(jī)工程學(xué)報(bào),2003,23(9):103106.。 (a) 原始的CT圖像 (b) 原始MR圖像 (c)配準(zhǔn)變換后的CT圖像 (d)配準(zhǔn)后的融合圖像圖1 CTMR圖像配準(zhǔn)結(jié)果 The CTMR registration results 4 討論傳統(tǒng)的遺傳算法容易陷入局部最優(yōu),本文吸取前人