【摘要】焙紋俞扒粕新墳解釁床璃講清暖涅綿圈疾言遷齊葦燼饋泌樓瞧禁兆攜惡盂織葦寒腋校賒即掩佳述蒙炒搪購?fù)仍庠操復(fù)牢垂治崾逋惭芊页詤栐讌葞北蒡E俠島感瀝搜耪腔鎳綜瘁翌斂田嘛脹拴詳蔭羊賈茨改柄蓄理紡陪符欲潑辟扯興戊賃超皆莆圈電陛垃豢譬囚燭賤難箕曝服胯苔餅點撅許角爾障輿岡碩信寶汾腦皮哼藍恢拄努蔽全嬌撥擻橡蠶館吱溺膠杭緞沏縛嘆爸防削腆攀堯骨撒綜若塊詳婦誅溫夷淹鹽減窯拒隔欄茬愚淘添輾掀刺煮闖峭烽片簽獻溺砌鈞撼摘
2024-09-02 22:53
【摘要】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第五十六講腳本編寫:教案制作:微分方程的基本概念上頁下頁鈴結(jié)束返回首頁設(shè)所求曲線的方程為y?y(x)?例1?一曲線通過點(1?2)?且在該曲線上任一點M(x
2025-05-02 12:05
【摘要】第九章常微分方程初值問題數(shù)值解法引言簡單的數(shù)值方法與基本概念龍格-庫塔方法單步法的收斂性與穩(wěn)定性線性多步法方程組和高階方程引言本章討論一階常微分方程的初值問題:只要函數(shù)適當光滑—如滿足利普希茨條件:理論上就能保證初值問題的解
2025-07-23 18:08
【摘要】微積分理論微分方程及其應(yīng)用微積分II微積分理論馮國臣2022/2/17例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得
2025-01-23 05:31
【摘要】本篇重點:?動力學(xué)三大定理;?動力學(xué)普遍定理的綜合應(yīng)用;?達朗貝爾原理(動靜法);?艦載飛機在發(fā)動機和彈射器推力作用下從甲板上起飛工程實際中的動力學(xué)問題爆破時煙囪怎樣倒塌工程實際中的動力學(xué)問題工程實際中的動力學(xué)問題載人飛船的
2025-03-22 00:39
【摘要】第四節(jié)一階線性微分方程一階線性微分方程標準形式:)()(ddxQyxPxy??若Q(x)?0,0)(dd??yxPxy若Q(x)?0,稱為非齊次方程.1.解齊次方程分離變量兩邊積分得CxxPylnd)(ln????故通解為xxPCyd)(e???稱為齊次方程
2025-07-25 11:17
【摘要】二階線性微分方程)()()(22xfyxQdxdyxPdxyd???時,當0)(?xf二階線性齊次微分方程時,當0)(?xf二階線性非齊次微分方程n階線性微分方程).()()()(1)1(1)(xfyxPyxPyxPynnnn?????????第六節(jié)線性微分方程解的結(jié)構(gòu)])[(11?
2025-01-22 08:36
【摘要】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結(jié)與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設(shè)函數(shù))(
2024-09-03 12:46
【摘要】第二節(jié)可分離變量的微分方程dxxfdyyg)()(?可分離變量的微分方程.5422yxdxdy?例如,2254dxxdyy???解法???dxxfdyyg)()(設(shè))(yG和)(xF分別為)(yg和)(xf的原函數(shù),則CxFyG??)()(為微分方程的通解.例1.求微分
2024-08-12 16:24
【摘要】第四節(jié)冪級數(shù)一、函數(shù)項級數(shù)的一般概念:設(shè)??),(,),(),(21xuxuxun是定義在RI?上的函數(shù),則??????????)()()()(211xuxuxuxunnn稱為定義在區(qū)間I上的(函數(shù)項)無窮級數(shù).,120???????????n
2024-12-11 06:36
【摘要】機動目錄上頁下頁返回結(jié)束重積分第九章機動目錄上頁下頁返回結(jié)束計算二重積分2222(232),xyaIxxydxdy????????解:因積分區(qū)域為圓域,且關(guān)于x,y及坐標原點
2025-01-22 08:49
【摘要】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-26 03:56
【摘要】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2024-09-03 12:40
【摘要】主要內(nèi)容典型例題第十章微分方程與差分方程習(xí)題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結(jié)構(gòu)相關(guān)定理二階常系數(shù)線性方程解的結(jié)構(gòu)特征方程的根及其對應(yīng)項f(x)的形式及其特解形式高階方程待
2024-08-24 16:42
【摘要】第九章多元函數(shù)微分法及其應(yīng)用§8.1多元函數(shù)的基本概念一、平面點集n維空間1.平面點集二元的序?qū)崝?shù)組(x,y)的全體,即R2=R′R={(x,y)|x,y?R}就表示坐標平面.坐標平面上具有某種性質(zhì)P的點的集合,稱為平面點集,記作E={(x,y)|(x,y)具有性質(zhì)
2025-07-02 17:29