【摘要】1、已知:如圖,△ABC中,∠C=90°,D為AB的中點(diǎn),E、F分別在AC、BC上,且DE⊥DF.求證:AE2+BF2=EF2.2、如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn),求證:(1)△ACE≌△BCD;(2)AD2+DB2=DE2.3、如
2024-08-16 03:29
【摘要】三角形全等的判定第1課時(shí)全等三角形與全等三角形的判定條件1.的兩個(gè)三角形叫做全等三角形,全等三角形的對(duì)應(yīng)邊____,對(duì)應(yīng)角____.2.兩個(gè)三角形只有一組或兩組對(duì)應(yīng)相等的元素,這兩個(gè)三角形全等;兩個(gè)三角形有三組對(duì)應(yīng)相等的元素,這兩個(gè)三角形
2024-11-13 04:27
【摘要】精品資源第19課三角形與全等三角形知識(shí)點(diǎn):三角形,三角形的角平分線,中線,高線,三角形三邊間的不等關(guān)系,三角形的內(nèi)角和,三角形的分類,全等形,全等三角形及其性質(zhì),三角形全等判定大綱要求1.了解全等形,全等三角形的概念和性質(zhì),逆命題和逆定理的概念,理解三角形,三角形的頂點(diǎn),邊,內(nèi)角,外角,角平分線,中線和高線,線段中垂線等概念。2.理解三角形的任意兩邊之和大于第
2025-04-19 12:49
【摘要】相似三角形與全等三角形的綜合復(fù)習(xí)友情提示:請(qǐng)根據(jù)課本相關(guān)內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對(duì)應(yīng)________,各邊對(duì)應(yīng)成________的兩個(gè)三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-28 14:14
【摘要】......全等三角形綜合復(fù)習(xí)切記:“有三個(gè)角對(duì)應(yīng)相等”和“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-26 03:58
【摘要】第一篇:全等三角形 復(fù)習(xí)提問通過前兩個(gè)問題復(fù)習(xí)鞏固上一節(jié)所講的知識(shí),通過問題3引導(dǎo)學(xué)生認(rèn)識(shí)到三角形全等是證明角相等、線段相等的重要方法,然后設(shè)疑,如何證明兩個(gè)三角形全等?從而引出課題。 活動(dòng)二:講...
2024-10-21 21:09
【摘要】全等三角形證明全等三角形共有5種判定方式:SSS、SAS、ASA、AAS、HL。特殊情況下平移、旋轉(zhuǎn)、對(duì)折也會(huì)構(gòu)成全等三角形。全等三角形判定方法一:SSS(邊邊邊),即三邊對(duì)應(yīng)相等的兩個(gè)三角形全等.舉例:如下圖,AC=BD,AD=BC,求證∠A=∠B.證明:在△ACD與△BDC中{AC=BD,AD=BC,CD=CD.∴△ACD≌△BDC.(SSS)∴∠A=∠B.(全等
2025-06-10 15:25
【摘要】三角形、全等三角形、軸對(duì)稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在直線作垂線,頂點(diǎn)和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個(gè)頂點(diǎn)和它的對(duì)邊中點(diǎn)的線段叫做三角形的中線。角平分線:三角形的一個(gè)內(nèi)角的平分線與這個(gè)角的對(duì)邊相交,這個(gè)角的頂
2025-07-27 01:22
【摘要】山亭育才中學(xué)翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長(zhǎng)構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-13 22:05
【摘要】全等三角形綜合復(fù)習(xí)切記:“有三個(gè)角對(duì)應(yīng)相等”和“有兩邊及其中一邊的對(duì)角對(duì)應(yīng)相等”的兩個(gè)三角形不一定全等。例1.如圖,四點(diǎn)共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例3.如圖,在中,,。為延長(zhǎng)線上一點(diǎn),點(diǎn)在上,,連接和。求證:。例4.如圖,//,//,求證:。例5.如圖,分別是外角和的平分線,它們交于
2025-06-26 18:30
【摘要】三角形全等的條件⑵先任意畫出一個(gè)△ABC,再畫一個(gè)△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐??探?已知:任意△ABC,畫一個(gè)△A/B/C/,使A/B/=AB,∠A/=∠A,A
2024-11-10 13:41
【摘要】數(shù)學(xué)·八年級(jí)·上冊(cè)第十三章全等三角形湛江第一中學(xué)金沙灣學(xué)校林創(chuàng)三角形全等的判定問題:如何才能確定兩個(gè)三角形全等呢?提示:可以從以下幾個(gè)方面去考慮1、定義2、角3、邊4、邊和角
2024-11-10 18:15
【摘要】創(chuàng)設(shè)情節(jié),提出問題下列各組圖形的形狀與大小有什么特點(diǎn)?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合兩個(gè)三角形叫做全等三角形小試身手下列說法是否正確,并簡(jiǎn)要說明理由:(1)邊長(zhǎng)相等的正方形都是全等圖形;(2)同一面中華人民共和國(guó)國(guó)旗上,
2025-07-21 09:49
【摘要】全等三角形下列各組圖形的形狀與大小有什么特點(diǎn)?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合的兩個(gè)三角形叫做全等三角形小試身手判斷下列說法是否正確,并說明理由:(1)邊長(zhǎng)相等的正方形都是全等圖形;(2)同一面中華人民共和國(guó)國(guó)旗上,4個(gè)小五角星
2024-08-12 17:35
【摘要】第四章圖形的認(rèn)識(shí)19三角形與全等三角形目標(biāo)方向理解三角形及其內(nèi)角、外角、中線、高線、角平分線的概念;掌握三角形的三邊關(guān)系,三角形的內(nèi)角和定理及其推論;熟練掌握三角形全等的性質(zhì)與判定和三角形全等的證明,理解三角形全等不僅是解決幾何問題的重要工具,而且是中考的核心內(nèi)容.探索并理解三角形與相交線、平行線和其他多邊形之間的內(nèi)在聯(lián)系,在復(fù)習(xí)中逐步
2024-12-11 15:38