【正文】
f ( - x ) + f 2 ( x ) 的最大值和單調(diào)遞增區(qū)間. ( 2) 由題知 F ( x ) = c os2x - sin2x + 1 + 2s in x c os x , ∴ F ( x ) = c os 2 x + s in 2 x + 1 , 即 F ( x ) = 2 sin??????2 x +π4+ 1. 當(dāng) sin??????2 x +π4= 1 時(shí), [ F ( x )]m a x= 2 + 1. 由-π2+ 2 k π ≤ 2 x +π4≤π2+ 2 k π( k ∈ Z) 得-3π8 + k π ≤ x ≤π8+ k π( k ∈ Z) ,故所求函數(shù) F ( x ) 的單調(diào)遞增區(qū)間為??????-3π8+ k π ,π8+ k π ( k ∈ Z) . 例 2 已 知 函 數(shù) f ( x ) = 2co s??????x +π3 ??? sin?????? x +π3 - ???3 cos?????? x +π3. ( 1 ) 求 f ( x ) 的值域和最小正周期 ; ( 2 ) 若對任意 x ∈??????0 ,π3, m ??????f ? x ? + 3 + 2 = 0 恒成立 , 求實(shí)數(shù)m 的取值范圍 . 【解答】 ( 1 ) f ( x ) = 2sin?????? x +π3 cos?????? x +π3- 2 3 cos2?????? x +π3 =sin?????? 2 x +2π3- 3??????cos?????? 2 x +2π3+ 1 = sin?????? 2 x +2π3- 3 cos?????? 2 x +2π3- 3 = 2sin?????? 2 x +π3- 3 . ∵ - 1 ≤ sin?????? 2 x +π3≤ 1 , ∴ - 2 - 3 ≤ 2sin?????? 2 x +π3-3 ≤ 2 - 3 , 又 T =2π2= π , 即 f ( x ) 的值域?yàn)?[ - 2 - 3 , 2 - 3 ] , 最小正周期為 π. ( 2 ) 當(dāng) x ∈??????0 ,π3時(shí) , 2 x +π3∈??????π3, π , ∴ sin?????? 2 x +π3∈ [ 0 , 1 ] , 此時(shí) f ( x ) + 3= 2sin?????? 2 x +π3∈ [ 0 , 2 ] . 由 m [ f ( x ) + 3 ] + 2 = 0 知 , m ≠ 0 , 且 f (