【摘要】2abab??重要不等式定理1:如果,那么(當(dāng)且僅當(dāng)時(shí)取“=”號(hào)).Rba?,abba222??ba?我們可以用比較法證明.探究?你能從幾何的角度解釋定理1嗎??幾何解釋?zhuān)保n本第
2025-07-27 07:30
2025-07-27 08:48
【摘要】(一)、基本不等式不等式的性質(zhì)⑴(對(duì)稱(chēng)性或反身性)兩個(gè)實(shí)數(shù)大小比較:abab0????⑴;abab0????⑵;abab0????⑶1、abba???abbcac????,abacbc?????abcdacbd???
2025-08-07 08:57
【摘要】基本不等式??.,,,,并給出證明以定理的形式給出下面將它為了方便同學(xué)們學(xué)習(xí)不等式要重過(guò)學(xué)經(jīng)我們已Rbaabba???222.,,,,等號(hào)成立時(shí)且僅當(dāng)當(dāng)那么如果定理baabbaRba????2122??.,,,,成立等號(hào)時(shí)當(dāng)且僅當(dāng)所以時(shí)等號(hào)成立當(dāng)且僅因?yàn)樽C明bababaabb
2025-08-08 17:11
【摘要】思考:該結(jié)論可推廣到三個(gè)正數(shù),四個(gè)正數(shù),…,甚至n個(gè)正數(shù)嗎?002,,..abababab?????若則等號(hào)當(dāng)且僅當(dāng)時(shí)成立2,,,,,.ababababab?
【摘要】2abab??§:ICM2022會(huì)標(biāo)趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對(duì)于任意實(shí)數(shù)a、b,我們有當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2025-08-07 15:14
2025-07-26 15:42
2025-07-27 11:43
2025-07-27 14:01
2025-07-27 16:57
2025-07-27 14:49
2025-07-26 12:42
2025-07-27 16:53
2025-07-27 11:40
2025-07-27 16:29