【摘要】y=sinx的圖象和性質(zhì)32?x2??2?yO1-1O1BA(O1)(B)所以我們只需要仿照上述方法,取一系列的x的值,找到這些角的正弦線,再把這些正弦線向右平移,使他們的起點分別與x軸上表示的數(shù)的點重合,再用光滑的曲線把這些正弦線的終點連接起來就得到正弦函數(shù)
2024-11-14 01:03
【摘要】正弦函數(shù)圖像的作出以上我們作出了y=sinx,x∈[0,2π]的圖象,因為sin(2kπ+x)=sinx(k∈Z),所以正弦函數(shù)y=sinx在x∈[-2π,0],x∈[2π,4π],x∈[4π,6π]時的圖象與x∈[0,2π]時的形狀完全一樣,只是位置不同?,F(xiàn)在把上述圖象沿著x軸平
2024-11-15 21:09
【摘要】(一)用什么方法作出正弦函數(shù)的圖象呢?描點法但描點法的各點的縱坐標都是查三角函數(shù)表得到的數(shù)值,不易描出對應點的精確位置,因此作出的圖象不夠準確.幾何法用單位圓中的正弦線作正弦函數(shù)的圖象.正弦函數(shù)的圖象為了作三角函數(shù)的圖象,三角函數(shù)的自變量要用弧度制來度量,使自變量與函數(shù)值都為
2024-11-16 01:35
【摘要】xyoP(x,y)1-11-1M?的終邊A(1,0)TsincostanMPOMAT??????R[-1,1]R[-1,1]R值域定義域三角函數(shù)sin?cos?tan?{|,}2kkZ?????
2024-11-14 08:32
2024-11-14 00:48
【摘要】三角函數(shù)的圖象與性質(zhì)、余弦函數(shù)的圖象x,對應的正弦值(sinx)、余弦值(cosx)是否存在?惟一?問題提出t57301p2???????,角α的正弦線、余弦線分別是什么?P(x,y)OxyMsinα=MPcosα=OM,要直觀、全面了解正、余弦函數(shù)的基本特性,我們應從哪個方面
【摘要】函數(shù)y=sinxy=cosx圖形定義域值域最值單調(diào)性奇偶性周期對稱性2?52?2?32??0xy2??1-1xR?xR?[1,1]y??[1,1]y??22xk????時,1maxy?22xk?????時,1miny??2
2024-11-14 12:25
【摘要】)sin(????xAyXyoXsin()yAx????sinyx?例.用五點法畫出當x∈[0,2π]時下列函數(shù)圖象:解:xsinx2sinx1sinx202??32?2?01-100020-20012012?0y=2sinx1y
2024-11-16 01:38
【摘要】數(shù)學:正弦函數(shù)的圖像和性質(zhì)(第二課時)課件ppt(新人教A版必修四)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx
【摘要】正弦函數(shù)的性質(zhì)楊政奎?說教材?說教學目標?說教學方法?說教學過程返回退出說教學目標
【摘要】正弦、余弦函數(shù)的圖象X湖南省衡陽縣一中胡隆衛(wèi)三角函數(shù)三角函數(shù)線正弦函數(shù)余弦函數(shù)正切函數(shù)正切線AT正弦、余弦函數(shù)的圖象yxO-1?PMA(1,0)Tsin?=MPcos?=OMtan?=AT注意:三角函數(shù)線是有向線段!正弦
【摘要】正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)甘肅省民勤縣第一中學李清華1.sinα、cosα、tanα的幾何意義.oxy11PMAT正弦線MP余弦線
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(2)123456-11123456-11一、知識點回顧?1、正余弦函數(shù)的定義域?2、正余弦函數(shù)的值域?3、練習(口答):函數(shù)的值域和最值函數(shù)
2024-11-13 09:19
【摘要】第18講│三角函數(shù)的圖象和性質(zhì)第18講三角函數(shù)的圖象和性質(zhì)第18講│知識梳理知識梳理1.周期函數(shù)(1)周期函數(shù)的定義對于函數(shù)f(x),如果存在一個非零常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有______________,那么函數(shù)f(x)就叫做周期函數(shù),非零常數(shù)T叫做這個
2024-11-15 21:28
【摘要】作函數(shù)的圖象的常用方法1.描點作圖法;2.變換作圖法.畫出下列函數(shù)的圖象,并(1)y=x2(2)y=x2+1(3)y=x2-1說明它們的關系:基礎練習y=x2y=x2y=x2+1y=x2y=x2+1y=x2-1函數(shù)y=f(x)+k與函數(shù)y
2024-11-14 01:04