【摘要】第四節(jié)數(shù)列的通項基礎(chǔ)梳理:如果數(shù)列{an}的________________之間的關(guān)系可以用一個公式來表示,那么這個公式叫做這個數(shù)列的通項公式.第n項與它的序號n2.數(shù)列的遞推公式:如果已知數(shù)列{an}的首項(或者前幾項),且任意一項an與an-1(或其前面的項)之間的關(guān)系可以______________,那么
2024-11-13 08:08
2024-11-16 18:12
【摘要】數(shù)列的概念、通項公式和遞推公式期末復(fù)習(xí)一、數(shù)列的概念:數(shù)列.項是關(guān)于項數(shù)的一種特殊的函數(shù)關(guān)系,只是定義域是自小到大的正整數(shù)而已.:通項公式法,遞推公式法,前n項和法,和圖像法等.(圖像是自變量取正整數(shù)的一些孤立的點)二、數(shù)列的通項公式:???Nnnfananannn),(:.
2024-11-13 03:30
【摘要】等比數(shù)列的通項公式(2)陽光國際學(xué)校高中部數(shù)學(xué)組復(fù)習(xí)一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1q0時,數(shù)列各項同號q0時,數(shù)列各項正負相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-16 16:41
【摘要】及通項公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用
2024-11-13 03:51
2024-11-16 18:09
【摘要】
【摘要】數(shù)列通項的求法數(shù)列是高中代數(shù)的重要內(nèi)容之一,也是初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點,因而在歷年的高考試題中占有較大的比重,在這類問題中,求數(shù)列的通項往往是解題的突破口、關(guān)鍵點。一、觀察法?觀察法就是觀察數(shù)列特征,橫向看各項之間的結(jié)構(gòu),縱向看各項與項數(shù)n的內(nèi)在聯(lián)系。?適用于一些較簡單、特殊的數(shù)列。例1寫出下列數(shù)列的一
2025-01-11 14:05
【摘要】主講老師:數(shù)列復(fù)習(xí)——通項公式基本概念如果數(shù)列{an}的第n項an與n之間的關(guān)系可以用一個公式來表示,這個公式就叫做這個數(shù)列的通項公式.?dāng)?shù)列的通項公式:數(shù)列的通項公式的求法例1.根據(jù)數(shù)列的前幾項,寫出下列數(shù)列的一個通項公式:;,72,114,
2024-11-13 01:17
【摘要】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2024-08-27 01:47
【摘要】專題:數(shù)列的通項求通項的常見問題:1、特殊數(shù)列的通項2、構(gòu)造特殊數(shù)列,間接求通項3、由Sn求an4、由遞推關(guān)系求an已知數(shù)列{an}中,a1=2。(1)求證:數(shù)列是等差數(shù)列。(2)求數(shù)列{an}的通項公式。『回顧』
2024-11-13 13:17
【摘要】數(shù)列通項的求法一、公式法二、迭加法若an+1=an+f(n),則:若an+1=f(n)an,則:三、疊乘法an=S1(n=1),Sn-Sn-1(n≥2).an=a1+?(ak-ak-1)=a1+?f(k-1)=a1+?f(k).n-1k=1
2024-11-15 08:49
【摘要】數(shù)列通項的求法高三備課組求數(shù)列的通項方法1、由等差,等比定義,寫出通項公式2、利用迭加an-an-1=f(n)、迭乘an/an-1=f(n)、迭代3、一階遞推,我們通常將其化為
2024-11-13 08:47
【摘要】數(shù)列的通項公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個數(shù)列從第二項起,它的每一項與前一項的差為常數(shù),那么這個數(shù)列為等差數(shù)列。其通項為:dnaan)1(1???是如何推導(dǎo)出來的呢??由定義:
2024-11-14 00:27
【摘要】等比、差數(shù)列前n項和的性質(zhì){an}為等比數(shù)列,Sn為其前n項和,則SK,S2K-SK,S3K-S2K,···仍構(gòu)成等比數(shù)列,且有(S2K-SK)2=SK·(S3K-S2K)例{an}中,S10=10,S20=30,求S30.例{an}中,S10=10,S20=30,求S30.{an}為等差
2025-05-03 18:12