【摘要】軸對稱中幾何動點最值問題總結(jié) 軸對稱的作用是“搬點移線”,可以把圖形中比較分散、缺乏聯(lián)系的元素集中到“新的圖形”中,為應(yīng)用某些基本定理提供方便。比如我們可以利用軸對稱性質(zhì)求幾何圖形中一些線段和的最大值或最小值問題。利用軸對稱的性質(zhì)解決幾何圖形中的最值問題借助的主要基本定理有三個:(1)兩點之間線段最短;(2)三角形兩邊之和大于第三邊;(3)垂線段最短?!〕踔须A段
2025-06-29 20:26
【摘要】......軸對稱中幾何動點最值問題總結(jié) 軸對稱的作用是“搬點移線”,可以把圖形中比較分散、缺乏聯(lián)系的元素集中到“新的圖形”中,為應(yīng)用某些基本定理提供方便。比如我們可以利用軸對稱性質(zhì)求幾何圖形中一些線段和的最大值或最小值問題。利用軸對稱的
2025-03-29 04:24
【摘要】§對稱及反對稱性質(zhì)的利用對稱結(jié)構(gòu)—結(jié)構(gòu)的幾何形狀、支承情況、桿件的截面尺寸和彈性模量均對稱于某一幾何軸線,該結(jié)構(gòu)就是對稱結(jié)構(gòu)。?BACK一、選取對稱的基本結(jié)構(gòu)對稱力對稱軸兩邊的力大小相等,將結(jié)構(gòu)繞對稱軸對折后其作用位置和方向均相同的力;反對稱力
2025-05-17 23:33
【摘要】......授課教案學(xué)員姓名:________________學(xué)員年級:________________授課教師:_________________所授科目:_________上
2025-06-22 05:19
【摘要】完美WORD格式資料利用軸對稱求最短距離問題基本題引入:如圖(1),要在公路道a上修建一個加油站,有A,B兩人要去加油站加油。加油站修在公路道的什么地方,可使兩人到加油站的總路程最短?你可以在a上找?guī)讉€點試一試,能發(fā)現(xiàn)什么規(guī)律?a·A&
2025-03-27 12:45
【摘要】利用軸對稱求最短距離問題基本題引入:如圖(1),要在公路道a上修建一個加油站,有A,B兩人要去加油站加油。加油站修在公路道的什么地方,可使兩人到加油站的總路程最短?你可以在a上找?guī)讉€點試一試,能發(fā)現(xiàn)什么規(guī)律?圖3思路分析:如圖2,我們可以把公路a近似看成一條直線,問題就是要在a上找一點M,使AM與BM的和最小。設(shè)A′是A的對稱點,本問題也就是要使A′M
【摘要】構(gòu)建軸對稱模型求線段和的最小值張店區(qū)灃水中學(xué)高剛近幾年來,最小值問題成為中考命題的熱點,其中有些問題的解決常用構(gòu)建軸對稱模型的方法。學(xué)習(xí)目標(biāo):知識目標(biāo):掌握軸對稱圖形的做法和三角形三邊的關(guān)系,根據(jù)問題建構(gòu)數(shù)學(xué)模型,解決實際問題。能力目標(biāo):通過觀察、分析、對比等方法,提高學(xué)生分析問題,解決問題的能力,進一步強化分類歸納綜合的思想,提高綜合能力。情感目標(biāo):通過自己的參與和教
2025-06-21 22:45
【摘要】專業(yè)整理分享授課教案學(xué)員姓名:________________學(xué)員年級:________________授課教師:_________________所授科目:_________上課時間:______年____月____日(~
2025-06-22 05:06
【摘要】利用函數(shù)的單調(diào)性(最值)求參數(shù)的取值范圍例1.已知函數(shù)),0()(2Raxxaxxf????,若)(xf在????,2上為增函數(shù),求實數(shù)a的取值范圍.跟蹤訓(xùn)練:1.已知函數(shù)????????,2),0()(2xaxaxxf上遞增,求實數(shù)a的取值范圍.2.若函數(shù)xxm
2024-11-13 06:38
【摘要】利用算術(shù)(幾何)平均數(shù)例1、判斷正誤(1)函數(shù)y=x+的最小值為2(2)已知1≤x≤3,2≤y≤4,則當(dāng)x=y=3時,xy有最大值9(3)函數(shù)y=的最小值為2x121223
2024-08-15 14:18
2024-08-15 10:06
2025-07-27 13:03
2025-07-27 12:16
【摘要】九年級數(shù)學(xué)(下)第三章圓?2.圓的對稱性(1)請觀察下列三個銀行標(biāo)志有何共同點?圓的對稱性?圓是軸對稱圖形嗎?想一想P881如果是,它的對稱軸是什么?你能找到多少條對稱軸?●O你是用什么方法解決上述問題的?圓的對稱性?圓是軸對稱圖形.圓的對稱軸是任意一條經(jīng)過圓心的直線
2024-11-10 19:11
【摘要】基本不等式應(yīng)用一:直接應(yīng)用求最值例1:求下列函數(shù)的值域(1)y=3x2+(2)y=x+解:(1)y=3x2+≥2=∴值域為[,+∞)(2)當(dāng)x>0時,y=x+≥2=2;當(dāng)x<0時,y=x+=-(-x-)≤-2=-2∴值域為(-∞,-2]∪[2,+∞)二:湊項例2:已知,求函數(shù)的最大值。解:因,所以首先要“調(diào)整”符號,又不是常數(shù)
2025-07-23 11:31