【摘要】第4課因式分解〖知識點(diǎn)〗因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項(xiàng)式的因式(十字相乘法、求根)、因式分解一般步驟?!伎疾橹攸c(diǎn)與常見題型〗考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點(diǎn)考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運(yùn)用。習(xí)題類型以填空題為多,也有選擇題和解答題。
2024-11-10 23:26
【摘要】第二章分解因式2020-5-18?(1)單項(xiàng)式乘以單項(xiàng)式(2)單項(xiàng)式乘以多項(xiàng)式:a(m+n)=am+an(3)多項(xiàng)式乘以多項(xiàng)式:(a+b)(m+n)=am+an+bm+bn?(1)平方差公式:(a
【摘要】因式分解的復(fù)習(xí)華師康大(外語)學(xué)校制作者:周大興一、因式分解的定義把一個多項(xiàng)式化為幾個整式的積的形式叫做把這個多項(xiàng)式因式分解,也叫做把這個多項(xiàng)式分解因式。二、因式分解與整式乘法的關(guān)系是什么﹖整式的積多項(xiàng)式整式乘法因式分解練習(xí)1下列各式中,是因式分解的,請在括號內(nèi)打“√”,否則打“×
【摘要】第二章因式分解知識點(diǎn)1:分解因式的定義1.分解因式:把一個多項(xiàng)式化成幾個_整式的乘的積,這種變形叫做分解因式,它與整式的乘法互為逆運(yùn)算。如:判斷下列從左邊到右邊的變形是否為分解因式:①()②()③()④()知識點(diǎn)2:公因式公因式:定義:我們把多項(xiàng)式各項(xiàng)都含有的相同因式,叫做這個多項(xiàng)式各項(xiàng)
2025-04-19 22:20
【摘要】第一章第四課時:因式分解?要點(diǎn)、考點(diǎn)聚焦?課前熱身?典型例題解析?課時訓(xùn)練?要點(diǎn)、考點(diǎn)聚焦(1)提公因式法(2)運(yùn)用公式法:①平方差公式:a2-b2=(a+b)(a-b)②完全平方公式:a2±2ab+b2=(a±b)2(3)二次三項(xiàng)式型:x2+(a+b)x+a
2024-11-10 19:29
【摘要】初二數(shù)學(xué)檢測試卷(因式分解檢測)班別:姓名:學(xué)號:成績:一、判斷題(對的填T,錯的填F,本大題共5小題,每小題2分,共10分)1.-4x2-9=-(2x+3)(2x-3).2.多項(xiàng)式1+ab+是完全平方式.3.若x+y=3,xy=2,則xy2+x2y的
2024-12-07 02:58
【摘要】八年級數(shù)學(xué)(下)第二章提高題:(1)2294nm?;(2)22)(16)(9nmnm???;(3)4416nm?;(1)25)(10)(2????yxyx;(2)4224817216bbaa??;
【摘要】復(fù)習(xí)課練習(xí)小結(jié)定義方法步驟把一個多項(xiàng)式化成幾個整式的積的形式,叫做多項(xiàng)式的分解因式。也叫做因式分解。即:一個多項(xiàng)式→幾個整式的積注:必須分解到每個多項(xiàng)式因式不能再分解為止(二)分解因式的方法:(1)、提取公因式法
2024-12-12 14:23
【摘要】第1課時第23課時第4課時復(fù)習(xí)回顧??________1??xx口答:????________11???xx??________732??xxxx?212?xxx1462?問題:630可以被哪些整數(shù)整除?解決這個問題,需要對
2024-11-27 10:45
【摘要】2021~2004學(xué)年度第二學(xué)期八年級單元測試卷(因式分解)班級____________學(xué)號_____________姓名_____________一、填空題:(每小題2分,共24分)1、把下列各式的公因式寫在橫線上:①yxx22255?=;②nn
【摘要】第一章第四課時:因式分解?要點(diǎn)、考點(diǎn)聚焦?典型例題解析?課時訓(xùn)練一、考點(diǎn)聚集:因式分解:把一個多項(xiàng)式化成幾個因式的乘積的形式.因式分解的方法:
2024-11-27 12:19
【摘要】例1.對下列多項(xiàng)式因式分解:??2510)5(42025)4(416)3(221)2(42)1(222222223322?????????abbayxyxxxxyxzyyx例2.把下列多項(xiàng)式因式分解:??????????222224442
2024-12-04 07:58
【摘要】北師大版八年級(下)分解因式診斷練習(xí)1、計算:;43)1(ba?);13(2)2(??yxx);3)(3()3(??aa.)2()4(2?y復(fù)習(xí)舊知下列計算是什么運(yùn)算?;43)1(ba?);13(2)2(??yxx);3)(3()3(??aa.)2()4(2?y單項(xiàng)式乘以單項(xiàng)式
【摘要】一.想一想:下列各式從左到右的變形中,哪些是因式分解?為什么?bcacbac???)()1(2222))(2(bababa????))(()3(22bababa????222)1)(1(1)4(yxxyx??????答:只有第(3)小題是因式分解因式分解概念:把一個多項(xiàng)式寫成幾個整式乘積的形式
2024-11-27 13:06
【摘要】4.1因式分解第四章因式分解4.1因式分解得分________卷后分________評價________1.把一個多項(xiàng)式化成幾個的形式,這種變形叫做因式分解.2.多項(xiàng)式的因式
2024-12-12 03:09