【正文】
基底最大壓力:地基承載力特征值及地基承載力驗算 所以基礎(chǔ)選用底面尺寸合適計算基底凈反力:偏心矩: 基礎(chǔ)邊緣處的最大和最小凈反力:確定基礎(chǔ)底板厚度(采用錐形基礎(chǔ))柱邊基礎(chǔ)截面抗沖切驗算: 因偏心受壓,:沖切力:抗沖切力:配筋計算柱邊凈反力:兩個方向采用相同的配筋:7. 科技資料翻譯一、科技資料原文:Structural Systems to resist lateral loadsCommonly Used structural SystemsWith loads measured in tens of thousands kips, there is little room in the design of highrise buildings for excessively plex thoughts. Indeed, the better highrise buildings carry the universal traits of simplicity of thought and clarity of expression.It does not follow that there is no room for grand thoughts. Indeed, it is with such grand thoughts that the new family of highrise buildings has evolved. Perhaps more important, the new concepts of but a few years ago have bee monplace in today’ s technology.Omitting some concepts that are related strictly to the materials of construction, the most monly used structural systems used in highrise buildings can be categorized as follows:Momentresisting frames.Braced frames, including eccentrically braced frames.Shear walls, including steel plate shear walls.Tubeintube structures.Tubeintube structures.Coreinteractive structures.Cellular or bundledtube systems.Particularly with the recent trend toward more plex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most highrise buildings have structural systems built up of binations of frames, braced bents, shear walls, and related systems. Further, for the taller buildings, the majorities are posed of interactive elements in threedimensional arrays.The method of bining these elements is the very essence of the design process for highrise buildings. These binations need evolve in response to environmental, functional, and cost considerations so as to provide efficient structures that provoke the architectural development to new heights. This is not to say that imaginative structural design can create great architecture. To the contrary, many examples of fine architecture have been created with only moderate support from the structural engineer, while only fine structure, not great architecture, can be developed without the genius and the leadership of a talented architect. In any ev?;鬃畲髩毫Γ旱鼗休d力特征值及地基承載力驗算 所以基礎(chǔ)選用底面尺寸合適計算基底凈反力:偏心矩: 基礎(chǔ)邊緣處的最大和最小凈反力:確定基礎(chǔ)底板厚度(采用錐形基礎(chǔ))柱邊基礎(chǔ)截面抗沖切驗算: 因偏心受壓,:沖切力:抗沖切力:配筋計算柱邊凈反力:兩個方向采用相同的配筋:⑵ B軸柱下獨立基礎(chǔ)設(shè)計:按構(gòu)造一般要求擬定獨立基礎(chǔ)的截面尺寸,如下圖所示:按軸心荷載初步確定基礎(chǔ)底面面積:考慮偏心荷載的影響,將增大后有:采用方形基礎(chǔ):計算基底最大壓力基礎(chǔ)及回填土重:基底處豎向力合力:基底處總力矩:偏心矩 所以偏心力作用點在基礎(chǔ)截面內(nèi)。獨立基礎(chǔ)采用混凝土,鋼筋采用。用承載能力極限狀態(tài)下荷載效應(yīng)的基本組合中最不利荷載組合來進(jìn)行獨立基礎(chǔ)的設(shè)計計算。=>, 滿足要求。由以上可知,上柱柱端彎矩設(shè)計值 對二級抗震等級,柱底彎矩設(shè)計值 = 框架柱的剪力設(shè)計值:<,滿足要求。(3)柱斜截面受剪承載力計算。mm又因為N=<600560=,故按構(gòu)造配筋,且應(yīng)滿足=%,%,故選425(As==1964㎜2)。N=,節(jié)點上下、柱彎矩==此組內(nèi)力是非地震組合情況,且無水平荷載效應(yīng),故不必進(jìn)行調(diào)整,且取=H== H >5,故應(yīng)考慮偏心矩增大系數(shù)。mm < 為大偏心,采取對稱配筋。柱的計算長度為:=H==因為>5,故應(yīng)考慮偏心矩增大系數(shù)。B節(jié)點左、右梁端彎矩 -+ B節(jié)點上、下柱端彎矩= -+()= =+= =+= 則:== ,在節(jié)點處將其按彈性彎矩分配給上、下柱端。以第二層B柱為例說明。(5) 框架柱(1)剪跨比和軸壓比驗算表中給出了框架柱各層剪跨比和軸壓比計算結(jié)果,由表可見,各柱的剪跨比和軸壓比均滿足規(guī)范要求。則箍筋的配置如下,梁端加密區(qū)箍筋取2Φ8@100,非加密區(qū)取2肢Φ8@200,箍筋設(shè)置滿足要求。(2)梁斜截面受剪承載力計算AB跨:REV=<300600=故截面尺寸滿足要求,箍筋采用HPB235級鋼筋()。支座上部=,但須滿足配筋率>%,則取422+222,()。m故屬第一類T型截面= ==2049實配422+222(As=2281) ρ=%% ,滿足要求將下部跨間截面的422鋼筋伸入支座作為支座負(fù)彎矩作用下的受壓鋼筋(s =1520),再計算相應(yīng)的受拉鋼筋A(yù)s。梁內(nèi)縱向鋼筋選HRB400級鋼(=360N/),b=,下部跨間截面按T形截面計算,因為 =2300100(600100/2)=m跨間彎矩取控制截面,及支座邊緣處的正彎矩,可求相應(yīng)的剪力:V=(+)=則支座邊緣處=== KN當(dāng)梁下部受拉時,按T形截面設(shè)計,當(dāng)梁上部受拉時,按矩形截面設(shè)計。支座彎矩MA=()=(1)梁的正截面受彎承載力計算。各層梁的內(nèi)力組合調(diào)整結(jié)果如下表:梁彎矩組合設(shè)計值 層號梁截面位置內(nèi)力豎向荷載內(nèi)力③地震荷載內(nèi)力組合①恒載②活載豎向荷載內(nèi)力組合豎向荷載內(nèi)力與地震作用內(nèi)力組合①+②①+②(①+②)+③(①+②)③ 57—8左端M V 跨中M 右端M V 8—9左端M V 跨中M 右端M V 410—11左端M V 跨中M 右端M V 11—12左端M V 跨中M 右端M V 313—14左端M V 跨中M 右端M V 14—15左端M V 跨中M 右端M V 216—17左端M V 跨中M 右端M V 17—18左端M V 跨中M 右端M V 1 19—20左端M V 跨中M 右端M V 20—21左端M V 跨中M 右端M V ηvb梁端剪力增大系數(shù)。框架梁內(nèi)力組合:本方案考慮了三種內(nèi)力組合,+, SGk + SQk+。(2)框架梁內(nèi)力組合。結(jié)構(gòu)的抗震等級可根據(jù)結(jié)構(gòu)類型、地震烈度、房屋高度等因素由《建筑抗震設(shè)計規(guī)范》GB500112001確定。水平地震作用下框架的彎矩圖、。2) 表中M單位為kN表12 梁端彎矩、剪力及柱軸力計算層次邊梁走道梁柱軸力 ?。謆 ?。謆邊柱N中柱N 5 4 321注:1)柱軸力的負(fù)號表示拉力。 Mbl= Mbr= Vb= Ni=表11 各層柱端彎矩及剪力計算層次hi /mVi/Kn∑Dij/(N/mm)邊柱中柱D