【摘要】等腰三角形第一課時知識回顧問題探究課堂小結(jié)隨堂檢測(1)什么是軸對稱圖形?(2)三角形是軸對稱圖形嗎?(3)什么樣的三角形是軸對稱圖形?知識回顧問題探究課堂小結(jié)隨堂檢測活動1探究一:探索等腰三角形的性質(zhì)重點知識★回顧舊知,回憶等腰三角形的概念及腰、底邊、頂角、底角
2025-06-15 12:41
【摘要】給我最大快樂的,不是已懂的知識,而是不斷的學(xué)習(xí).高斯1復(fù)習(xí)、等腰三角形的性質(zhì)是什么?性質(zhì)1等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)2引入:我們知道,如果一個三角形有兩條邊相等,那么它們所對的角相等,反過來,如果一個三角形有兩個角相等,那么它們所對的邊有什么關(guān)系?性質(zhì)2等腰三角形的頂角平分線與底邊上
2025-06-24 05:33
【摘要】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-18 12:08
【摘要】第十三章軸對稱等腰三角形等腰三角形第2課時等腰三角形的判定2022秋季數(shù)學(xué)八年級上冊?R等腰三角形的判定一個三角形有兩個角,則這兩個角所對的邊也(簡寫成“等角對”).自我診斷1.在△ABC中,∠B=∠C,AB=5,則AC的
2025-06-16 13:38
【摘要】第十三章軸對稱等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)2022秋季數(shù)學(xué)八年級上冊?R等邊對等角等腰三角形的(簡寫成“”).自我診斷1.在△ABC中,若AB=AC,則∠B=;若∠B=80°,
【摘要】第2課時等腰三角形的判定知識要點基礎(chǔ)練知識點1等腰三角形的判定△ABC中,∠A的相鄰?fù)饨鞘?0°,要使△ABC為等腰三角形,則∠B為(B)°°°或35°°,不可能是等腰三角形的是(B
2025-06-20 00:16
【摘要】等腰三角形等腰三角形第1課時等腰三角形的性質(zhì)知識要點基礎(chǔ)練知識點1等腰三角形的性質(zhì)——等邊對等角40°,則它的底角度數(shù)為(D)°°°°,已知AB∥CD,AE與AB的夾角為48°,若CF與EF的長度相等,則∠
2025-06-20 00:17
2025-06-16 14:06
2025-06-16 14:05
2025-06-19 20:51
【摘要】那一年我們因緣而聚那一年我們風(fēng)雨同舟現(xiàn)在的你還記得當(dāng)初的豪情壯志嗎?如圖所示,把一張長方形的紙按圖中虛線對折,并剪去陰影部分,再把它展開,得到的△ABC是怎樣的三角形?一動手操作,得出概念A(yù)BCD有兩條邊相等的三角形是等腰三角形。ABC相等
2025-06-15 12:10
2025-06-21 12:57
【摘要】相互尊重是友誼的開始文明用語是溝通的開始彼此禮讓是和諧的開始生活學(xué)習(xí)中你做到了嗎?復(fù)習(xí)等腰三角形有怎樣的性質(zhì)?等腰三角形的兩個底角相等。(可以簡稱:等邊對等角)等腰三角形的頂角角平分線、底邊上的中線、底邊上的高互相重合。
2025-06-15 12:08
2025-06-21 13:09