【摘要】1、已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線上,則( ?。ˋ)(B)(C)(D)2、設(shè),則(A) (B) (C) (D)3、若的值等于( )A.2 B.3 C.4 D.64、若,則A. B. C. D.5、函數(shù)是( ) A.最小正周期為的奇函數(shù)B.最小正周期為的偶函數(shù)
2025-04-10 22:39
【摘要】.,....1、已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線上,則( ?。ˋ)(B)(C)(D)2、設(shè),則(A) (B) (C) (D)3、若的值等于( )A.2 B.3 C.4
【摘要】《三角函數(shù)》高考題精選(1)1.(2014全國卷文)已知角的終邊經(jīng)過點(diǎn),則()A.B.C.D.2.(2007北京文)已知,那么角是( ?。〢.第一或第二象限角 B.第二或第三象限角C.第三或第四象限角 D.第一或第四象限角3.(2005全國卷Ⅲ文理)已知為第三象限角,則所在的象限是()A.第一或第二象限
2025-06-10 13:47
【摘要】.三角函數(shù)題型分類總結(jié)一.求值1、===2、(1)(07全國Ⅰ)是第四象限角,,則(2)(09北京文)若,則.(3)(09全國卷Ⅱ文)已知△ABC中,,則.(4)是第三象限角,,則==3、(1)(07陜西)已知?jiǎng)t=
2025-07-27 18:49
【摘要】22.設(shè)的內(nèi)角所對(duì)的邊長分別為,且.(Ⅰ)求的值;(Ⅱ)求的最大值.解析:(Ⅰ)在中,由正弦定理及可得即,則;(Ⅱ)由得當(dāng)且僅當(dāng)時(shí),等號(hào)成立,故當(dāng)時(shí),的最大值為.,,.(Ⅰ)求的值;(Ⅱ)設(shè)的面積,求的長.解:(Ⅰ)由,得,由,得.所以. 5分(Ⅱ)由得,由(Ⅰ)知,故, 8分又,故,.所以. 10分(
2025-06-26 03:58
【摘要】2011年——2016年高考題專題匯編專題4三角函數(shù)、三角恒等變換三角恒等變換1、(16年全國3文)若,則cos2θ=(A)(B)(C)(D)2、(16年全國3理)若,則(A)(B)(C)1(D)3、(16年全國2文)函數(shù)的最大值為(A)4(B)5 (C)6 (D)
2025-04-11 12:18
【摘要】.,....三角函數(shù)與解三角形高考真題1.【2015湖南理17】設(shè)的內(nèi)角,,的對(duì)邊分別為,,,,且為鈍角.(1)證明:;(2)求的取值范圍.2.【2014遼寧理17】(本小題滿分12分)在中,內(nèi)角A,B,C的對(duì)邊a,b,c,且,已知,
2025-04-19 12:49
【摘要】04年2.已知點(diǎn)1(6,2)M和2(1,7)M,直線7ymx??與線段12MM的交點(diǎn)M分有向線段12MM的比為3:2,則m的值為()A.23?B.32?C.41D.47.已知,,abc為非零的平面向量.甲:abac???,乙:bc?,則()
2024-08-28 11:50
【摘要】三角函數(shù)恒等變形的基本策略。(1)常值代換:特別是用“1”的代換,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。(2)項(xiàng)的分拆與角的配湊。如分拆項(xiàng):sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配湊角:α=(α+β)-β,β=-等。(3)降次與升次。(4)化弦(切)法。(4)引入輔助角。asinθ+bco
2025-06-27 20:23
【摘要】三角函數(shù)部分高考題,只需將函數(shù)的圖像(A)A.向左平移個(gè)長度單位 B.向右平移個(gè)長度單位C.向左平移個(gè)長度單位 D.向右平移個(gè)長度單位,則的最大值為(B)A.1 B. C. D.23.(D)?。ǎ粒 。ǎ拢 。ǎ茫 。ǎ模瑒t的取值范圍是:(C)(A) ?。ǎ拢 。ǎ茫 ?/span>
2025-06-26 03:41
【摘要】、選擇題,在每小題給出的四個(gè)選擇題只有一項(xiàng)是符合題目要求的。1.已知角的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線上,則=A. B. C. D.2.已知函數(shù),其中的最小正周期為,且當(dāng)時(shí),取得最大值,則()A.在區(qū)間上是增函數(shù)B.在區(qū)間上是增函數(shù)C.在區(qū)間上是減函數(shù)D.在區(qū)間上是減函數(shù)3.若函數(shù)(ω0)在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)
2025-01-18 07:14
【摘要】平面向量與三角函數(shù)高考題選講教學(xué)任務(wù):1.復(fù)習(xí)三角函數(shù)有關(guān)公式;2.復(fù)習(xí)三角函數(shù)有關(guān)知識(shí)點(diǎn);3.作業(yè)題講評(píng).教學(xué)重點(diǎn):向量與三角函數(shù)整合問題歸類復(fù)習(xí).1.已知向量(Ⅰ)若,求的值;(Ⅱ)若求的值。
2025-08-07 16:10
【摘要】.,.....三角函數(shù)與解三角形1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能進(jìn)行弧度與角度的互化.2.三角函數(shù)(1)理解任意角三角函數(shù)(正弦、余弦、正切)的定義.(2)能利用單位圓中的三角函數(shù)線推導(dǎo)出,
2025-04-10 22:37
【摘要】高考實(shí)戰(zhàn)三角函數(shù)第三講歷年高考三角函數(shù)真題典型題型真題突破【例1】(2007年江西)若,則等于( ?。〢.B. C. D.【例2】(2007年陜西)已知,則的值為()A. B. C. D.【例3】(2005年湖北)若,則()A.(0,)B.(,)C.(,)D.(,)【
2025-04-20 07:40
【摘要】1答案見:2022年普通高等學(xué)校招生全國統(tǒng)一考試(山東卷)理科數(shù)學(xué)(必修+選修Ⅱ)第I卷(共60分)參考公式:如果事件A、B互斥,那么P(A+B)=P(A)+P(B)如果事件A、B相互獨(dú)立,那么P(A2B)=P(A)2(B)如果事件A在一次試驗(yàn)中
2025-01-12 01:00