【摘要】......相似三角形,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過(guò)點(diǎn)B作射線BB1∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C沿射線AC方向以每秒3
2025-03-28 06:32
【摘要】1.如圖,在△ABC中,D是BC上一點(diǎn),E是AD上一點(diǎn),且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點(diǎn)D在BC邊上移動(dòng),連接AD,將△ADC沿直線AD翻折,點(diǎn)C的對(duì)應(yīng)點(diǎn)為C1.(1)當(dāng)AC1⊥BC時(shí),CD的長(zhǎng)是多少?(2)設(shè)C
【摘要】精品資源相似三角形題目集錦1.操作如圖,在正方形ABCD中,P是CD上一動(dòng)點(diǎn)(與C、D不重合).使得三角形的直角頂點(diǎn)與P點(diǎn)重合,并且一條直角邊始終經(jīng)過(guò)點(diǎn)B,另一直角邊與正方形的某一邊所在直線交于點(diǎn)E.探究(1)觀察操作猜想哪一個(gè)三角形也△.(2)當(dāng)點(diǎn)P位于CD的中點(diǎn)時(shí),你得到的三角形與△BPC的周長(zhǎng)比是多少?
2025-08-07 03:40
【摘要】.,已知等邊△ABC,P在AC延長(zhǎng)線上一點(diǎn),以PA為邊作等邊△APE,EC延長(zhǎng)線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN都是等邊三角形,線段AN,MC交于點(diǎn)E,BM,CN交于點(diǎn)F。求證:(1)
2025-07-29 08:59
【摘要】精品資源相似三角形系列練習(xí)、乙兩個(gè)形狀相同(相似)的三角形框架,已知三角形框架甲的三邊分別為50cm、60cm、80cm,三角形框架乙的一邊長(zhǎng)為20cm,那么符合條件的三角形框架乙共有(),在△ABC中,AB=AC,AD是中線,P是AD上一點(diǎn),過(guò)C作CF∥AB,延長(zhǎng)BP交AC于點(diǎn)E,交CF于點(diǎn)F,試說(shuō)明BP2=PE·PF.
2025-08-07 04:54
【摘要】范文范例參考1、(1)如圖1,點(diǎn)O是線段AD的中點(diǎn),分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連結(jié)AC和BD,相交于點(diǎn)E,連結(jié)BC.求∠AEB的大?。唬?)如圖2,ΔOAB固定不動(dòng),保持ΔOCD的形狀和大小不變,將ΔOCD繞著點(diǎn)O旋轉(zhuǎn)(ΔOAB和ΔOCD不能重疊),求∠AEB的大小.圖1
2025-03-30 00:37
【摘要】1、(2007年成都)已知:如圖,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,與CD相交于點(diǎn)F,H是BC邊的中點(diǎn),連結(jié)DH與BE相交于點(diǎn)G。(!)求證:BF=AC;(2)求證:CE=BF;(3)C
2025-03-27 07:41
【摘要】,已知等邊△ABC,P在AC延長(zhǎng)線上一點(diǎn),以PA為邊作等邊△APE,EC延長(zhǎng)線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點(diǎn)C為線段AB上一點(diǎn),△ACM,△CBN都是等邊三角形,線段AN,MC交于點(diǎn)E,BM,CN交于點(diǎn)F。求證:(1)AN=MB.(2)將△ACM繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)一定角度,如圖②所示,其他條
【摘要】1相似三角形相似三角形的概念2在相似多邊形中,最為簡(jiǎn)單的就是相似三角形﹡相似三角形的定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形相似。3∠A=∠A′,∠B=∠B′,∠C=∠C′ACCACBBCBAAB????????△ABC∽△
2024-10-15 14:31
【摘要】全等三角形1已知:如圖,四邊形ABCD中,AC平分DBAD,CE^AB于E,且DB+DD=180°,求證:AE=AD+BE2如圖17所示,在∠AOB的兩邊上截取AO=BO,OC=OD,連接AD、BC交于點(diǎn)P,連接OP,則下列結(jié)論正確的是()①△APC
【摘要】2016專題:《全等三角形證明》1.已知:D是AB中點(diǎn),∠ACB=90°,求證:DABC2.已知:BC=DE,∠B=∠E,∠C=∠D,F(xiàn)是CD中點(diǎn),求證:∠1=∠2ABCDEF213.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求證:AE=AD+BE4.如圖,四邊形ABCD中
【摘要】官方網(wǎng)站:相似三角形及其性質(zhì)一、課堂講解知識(shí)點(diǎn)1、三角對(duì)應(yīng)相等,三邊對(duì)應(yīng)成比例的三角形叫相似三角形。如△ABC與△A/B/C/相似,記作:△ABC∽△A/B/C/。相似三角形的比叫相似比相似三角形的定義既是相似三角形的性質(zhì),也是三角形相似的判定方法。注意
2025-04-20 07:51
【摘要】......個(gè)性化輔導(dǎo)授課案教師:盧天明學(xué)生:時(shí)間2016年月日時(shí)段相似三角形的判定教學(xué)目
2025-04-20 07:43
【摘要】......【一】知識(shí)梳理【1】比例①定義:四個(gè)量a,b,c,d中,其中兩個(gè)量的比等于另兩個(gè)量的比,那么這四個(gè)量成比例②形式:a:b=c:d,③性質(zhì):基本性質(zhì):ac=bd1、可以把比例式與等積式互
2025-03-28 06:30
【摘要】【章節(jié)訓(xùn)練】第27章相似-8 一、選擇題(共15小題)1.(2011?惠山區(qū)模擬)梯形ABCD中AB∥CD,∠ADC+∠BCD=90°,以AD、AB、BC為斜邊向外作等腰直角三角形,其面積分別是S1、S2、S3,且S1+S3=4S2,則CD=( ?。.B.3ABC.D.4AB 2.(2012?深圳二模)如圖,n+
2025-03-30 01:22