【摘要】做幾何證明題方法歸納做幾何證明題方法歸納知識歸納:1.幾何證明是平面幾何中的一個重要問題,它對培養(yǎng)學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題常??梢韵嗷マD化,如證明平行關系可轉化為證明角等或角互補的問題。2.掌握分析、證明幾何問題的常用方法:(1)綜合法(由因導果),從已知條件出發(fā),
2025-03-27 07:18
【摘要】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對的弦或與圓心等距的兩弦或等...
2024-10-27 15:56
【摘要】第一篇:如何做幾何證明題 如何做幾何證明題 1、幾何證明是平面幾何中的一個重要問題,它對提高學生學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型;一是平面圖形的數量關系;二是有關平面圖形的位置...
2024-10-22 03:27
【摘要】第一篇:幾何證明題 幾何證明題集(七年級下冊) 姓名:_________班級:_______ 一、互補”。 E D 二、證明下列各題: 1、如圖,已知∠1=∠2,∠3=∠D,求證:DB/...
2024-10-27 12:50
【摘要】中考解答下列各題一、證明題:1、在正方形ABCD中,AC為對角線,E為AC上一點,連接EB、ED并延長分別交AD、AB于F、G(1)求證:EF=EG;(2)當∠BED=120°時,求∠EFD的度數.AFDEBC2、已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.(
2025-03-27 12:13
【摘要】幾何證明◆典例精析【例題1】(天津)已知Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如圖①,若半徑為r1的⊙O1是Rt△ABC的內切圓,求r1;(2)如圖②,若半徑為r2的兩個等圓⊙O1、⊙O2外切,且⊙O1與AC、AB相切,⊙O2與BC、AB相切,求r2;(3)如圖③,當n是大于2的正整數時,若半徑為rn的n個等
2025-03-27 06:14
【摘要】第一篇:如何做幾何證明題(無答案) 如何做幾何證明題 【知識精讀】 ,它對培養(yǎng)學生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數量關系;二是有關平面圖形的位置關系。這兩類問題...
2024-10-29 03:19
【摘要】第一篇:幾何證明題訓練 仁家教育---您可以相信的品牌! 仁家教育教案 百川東到海,何時復西歸? 少壯不努力,老大徒傷悲。 您的理解與支持是我們前進最大的動力!1 您的理解與支持是我們前進...
2024-10-21 22:32
【摘要】第一篇:幾何證明題練習 幾何證明題練習 ,Rt△ABC中AB=AC,點D、E是線段AC上兩動點,且AD=EC,AM⊥BD,垂足為M,AM的延長線交BC于點N,直線BD與直線NE相交于點F。試判斷△...
2024-10-27 12:16
【摘要】第一篇:幾何證明題(難) 附加題: 1、已知:如圖,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的...
2024-10-21 22:37
【摘要】第一篇:幾何證明題大全 幾何證明題 ,BD,CE是邊AC,AB上的中點,BD與CE相交于點O,BO與OD的長度有什么關系?BC邊上的中線是否一定過點O?為什么? 答題要求:請寫出詳細的證明過程,...
2024-10-22 00:16
【摘要】1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩直線平行10內錯角相等,兩直線平行
2025-08-08 03:51
【摘要】第一篇:高中幾何證明題 高中幾何證明題 如圖,在長方體ABCD-A1B1C1D1中,點E在棱CC1的延長線上,且CC1=C1E=BC=1/2AB=1.(1)求證,D1E//平面ACB1 (2)求...
2024-10-22 22:06
【摘要】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,FG分別為ED,BC的中點,O是外心,求證AO∥FG問題補充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【摘要】初二上證明題0011.如圖,DE∥BC,∠D+∠B=180°.求證:AB∥CD.2.如圖,AB∥CD,GH分別與AB、CD相交于點E、F,EM平分∠AEG,FN平分∠CFG.求證:EM∥FN.3.如圖,OB=BC,OC平分∠AOB.求證:AO∥BC.4.B如圖,AB∥CD,∠A+∠E=∠AM
2025-03-27 12:38