【摘要】三角函數(shù)中面積和周長(zhǎng)最值問題【知識(shí)回顧】【例題解析】 【例1】已知函數(shù)f(x)=sin2wx﹣sin2(wx﹣)(x∈R,w為常數(shù)且<w<1),函數(shù)f(x)的圖象關(guān)于直線x=π
2025-03-27 05:42
【摘要】三角函數(shù)的最值問題高三備課組1一:基礎(chǔ)知識(shí)1、配方法求最值主要是利用三角函數(shù)理論及三角函數(shù)的有界性,轉(zhuǎn)化為二次函數(shù)在閉區(qū)間上的最值問題,如求函數(shù)可轉(zhuǎn)化為求函數(shù)上的最值問題。2sinsin1yxx?????21,1,1yttt?????的最值2、化
2024-10-16 13:45
【摘要】三角函數(shù)的最值問題泥城中學(xué)田素偉:(1)會(huì)根據(jù)正弦和余弦函數(shù)的有界性和單調(diào)性求簡(jiǎn)單三角函數(shù)的最值和值域(2)運(yùn)用轉(zhuǎn)化,整體代換等數(shù)學(xué)思想,通過變形,換元等方法轉(zhuǎn)化為代數(shù)函數(shù)求其在給定區(qū)間內(nèi)的三角函數(shù)的最值和值域通過對(duì)最值問題的探索和解決,提高運(yùn)算能力,增強(qiáng)分析問題和解決問題的能力,體現(xiàn)數(shù)學(xué)思想方法在解決三角函數(shù)的最值
2024-11-25 21:37
【摘要】三角函數(shù)的最值問題溫州第二高級(jí)中學(xué)例1:解:例2:解:例3:解:例4
2024-11-10 19:16
【摘要】三角函數(shù)求最值問題總結(jié)在三角函數(shù)這部分,求最值或周期是常規(guī)性題目,在這種題型下,我覺得解決問題可以采用兩種化簡(jiǎn)思路:(1)化簡(jiǎn)成BwxAy???)sin(?此時(shí)不僅可以求最值,還可以求周期。(2)化簡(jiǎn)成關(guān)于正弦或余弦的一元二次函數(shù)形式,此時(shí)一般只要求求出最值。例題解析:例1、)42sin(23????xy求
2024-10-31 14:07
【摘要】三角函數(shù)的最值問題新沂市第一中學(xué)高三數(shù)學(xué)組授課人:安勇重點(diǎn):讓學(xué)生能運(yùn)用三角函數(shù)概念、圖象、性質(zhì)、同角三角函數(shù)的基本關(guān)系式、和差角公式等求有關(guān)最值問題;掌握求最值常見思想方法。難點(diǎn):利用三角函數(shù)的性質(zhì)求有關(guān)最值。下頁=sinx,y=cosx的值域是————。=asinx+
2024-11-16 16:46
【摘要】一、高考要求、值域、單調(diào)性和它們的圖象等,求三角函數(shù)的最大值和最小值.最小值.解決.最值問題是三角中考試頻率最高的重點(diǎn)內(nèi)容之一,需要綜合運(yùn)用三角函數(shù)概念、圖象、性質(zhì)以及誘導(dǎo)公式、同角三函數(shù)基本關(guān)系式、三角變換等,也是函數(shù)內(nèi)容的交匯點(diǎn),常見方法有
2024-11-15 12:57
【摘要】一點(diǎn)擊雙基題1(04全國(guó)Ⅳ)函數(shù)的最大值為.題2(03全國(guó))函數(shù)的最大值為__.AD題3(05浙江)已知k-4則函數(shù)的最小值為().(A)1(B)-1(C)2k+1(D)-2k+1
2024-11-11 02:34
【摘要】二次函數(shù)與三角形周長(zhǎng),面積最值問題知識(shí)點(diǎn):1、二次函數(shù)線段,周長(zhǎng)問題2、二次函數(shù)線段和最小值線段差最大值問題3、二次函數(shù)面積最大值問題【新授課】考點(diǎn)1:線段、周長(zhǎng)問題例1.(2018·宜賓)在平面直角坐標(biāo)系中,已知拋物線的頂點(diǎn)坐標(biāo)為(2,0),且經(jīng)過點(diǎn)(4,1),如圖,直線y=x與拋物線交于A、B兩點(diǎn),直線l為y=﹣1.(1)求拋物線的解析式;(
2025-03-27 06:24
【摘要】精品資源例析三角函數(shù)最值問題的若干解法三角函數(shù)是高中數(shù)學(xué)中重要的內(nèi)容之一,而最值問題的求解是三角函數(shù)的重要題型,在近幾年的高考題中經(jīng)常出現(xiàn),極具靈活性?,F(xiàn)舉例說明解決這種題型的若干方法,供大家參考。1.利用配方法例1.求函數(shù)的最值。解:將函數(shù)化為,配方得當(dāng)當(dāng)例2.若,那么函數(shù)的最小值是(
2025-03-27 07:06
【摘要】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件22《三角函數(shù)-三角函數(shù)的最值》一、高考要求、值域、單調(diào)性和它們的圖象等,求三角函數(shù)的最大值和最小值.最小值.解決.最值問題是三角中考試頻率最高的重點(diǎn)內(nèi)容之一,需要綜合運(yùn)用三角函數(shù)概念、圖象、性質(zhì)
2024-11-13 08:51
【摘要】第一篇:兩角和與差的三角函數(shù)解斜三角形三角變換中的最值問題教案 兩角和與差的三角函數(shù),解斜三角形·三角變換中的最值問題·教案 北京市第一七一中學(xué)許綺菲 教學(xué)目標(biāo) 1.復(fù)習(xí)、鞏固和、差、倍、半角...
2024-10-14 03:04
【摘要】高中三角函數(shù)最值問題的一些求法關(guān)于型三角函數(shù)式的最值,可以由三角函數(shù)的性質(zhì)直接求出,如;;與在定義域內(nèi)無最值。一、直接應(yīng)用三角函數(shù)的定義及三角函數(shù)值的符號(hào)規(guī)律解題例1:求函數(shù)=的最值分析:解決本題時(shí)要注意三角函數(shù)值的符號(hào)規(guī)律,分四個(gè)象限討論。解:(1)當(dāng)在第一象限時(shí),有(2)當(dāng)在第二象限時(shí),有(3)當(dāng)在第三
2025-03-29 05:41
【摘要】三角函數(shù)最值問題的十種常見解法福州高級(jí)中學(xué)陳錦平三角函數(shù)是重要的數(shù)學(xué)運(yùn)算工具,三角函數(shù)最值問題是三角函數(shù)中的基本內(nèi)容,,一方面應(yīng)充分利用三角函數(shù)自身的特殊性(如有界性等),另一方面還要注意將求解三角函數(shù)最值問題轉(zhuǎn)化為求一些我們所熟知的函數(shù)(二次函數(shù)等):一.轉(zhuǎn)化一次函數(shù)在三角函數(shù)中,正弦函數(shù)與余弦函數(shù)具有一個(gè)最基本也是最重要的特征——有界性,利用正弦函數(shù)與余弦函數(shù)的有界
【摘要】求三角函數(shù)的周期、單調(diào)區(qū)間、最值。。例1】判斷下列函數(shù)的奇偶性:(1)(2)(3)【例2】求下列函數(shù)的周期:(1)(2)(3)(4)(5)
2024-08-16 10:58