【摘要】定義含有未知函數(shù)的導(dǎo)數(shù)或微分的方程,稱為微分方程.未知函數(shù)是一元函數(shù)的微分方程,稱為常微分方程.微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)(或微分)的最高階數(shù),稱為微分方程的階.一階微分方程的一般形式為0),,(??yyxF.基本概念例如,都是一階微分方程.22xyyy???
2024-10-22 13:27
【摘要】在許多實(shí)際問題中,當(dāng)直接導(dǎo)出變量之間的函數(shù)關(guān)系較為困難,但導(dǎo)出包含未知函數(shù)的導(dǎo)數(shù)或微分的關(guān)系式較為容易時(shí),可用建立微分方程模型的方法來研究該問題,本節(jié)將通過一些最簡(jiǎn)單的實(shí)例來說明微分方程建模的一般方法。在連續(xù)變量問題的研究中,微分方程是十分常用的數(shù)學(xué)工具之一。微分方程模型微分方程建模的幾個(gè)簡(jiǎn)單實(shí)例例1(理想單擺運(yùn)動(dòng)
2024-10-03 14:48
【摘要】?基本求導(dǎo)公式?導(dǎo)數(shù)的四則運(yùn)算法則?復(fù)合函數(shù)的求導(dǎo)法xuxdydyduyyudxdudx???????或或復(fù)習(xí)[f(?(x))]?=f?(u)??(x)=f?(?(x))??(x)前面我們學(xué)習(xí)了函數(shù)的各種求導(dǎo)法。顯然y=x2的導(dǎo)數(shù)是y?=2x,而
2025-05-16 21:33
【摘要】果園里有桃樹45棵,杏樹的棵數(shù)是桃樹的3倍。你能提出什么數(shù)學(xué)問題?1、杏樹有多少棵?2、兩種樹共有多少棵?3、杏樹比桃樹多多少棵?4、桃樹比杏樹少多少棵?45x3=135(棵)45x3+45=180(棵)45x3-45=90(棵)45x3-45=90(棵)果園里有桃樹和杏樹共180棵,杏樹的棵數(shù)是
2024-12-16 20:50
【摘要】人教版數(shù)學(xué)第九冊(cè)果園里有桃樹45棵,杏樹的棵數(shù)是桃樹的3倍。你能提出什么數(shù)學(xué)問題?該怎樣解答?1、杏樹有多少棵?45×3=135(棵)45×3+45=180(棵)45×3-45=90(棵)45×3-45=90(棵)2、兩種樹共有多少棵?3、杏樹比桃樹多多少棵?4、桃樹比
2024-12-17 11:46
【摘要】上頁下頁鈴結(jié)束返回首頁1主要內(nèi)容:第二章導(dǎo)數(shù)與微分第三節(jié)由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)、高階導(dǎo)數(shù)一、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù);二、高階導(dǎo)數(shù).上頁下頁鈴
2025-05-16 16:21
【摘要】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個(gè)自變量x,y,但若固定其中一個(gè)自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來討論它
2024-08-15 18:32
【摘要】上頁下頁返回退出JlinInstituteofChemicalTechnology一、隱函數(shù)的導(dǎo)數(shù)二、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù)§由方程所確定的函數(shù)的導(dǎo)數(shù)三、相關(guān)變化率上頁下頁返回退出JlinInstituteofChemicalTechnology一、隱函數(shù)的導(dǎo)數(shù)v顯函數(shù)與隱
2025-07-28 13:16
【摘要】導(dǎo)數(shù)的定義0()yfxx?設(shè)函數(shù)在點(diǎn)的某定義:個(gè)鄰域內(nèi)0,(xxx?有定義當(dāng)自變量在處取得增量點(diǎn)0),xxy??仍在該鄰域內(nèi)時(shí)相應(yīng)地函數(shù)取得00()();yfxxfxyx???????增量如果與之0,()xyfx?
2024-08-16 04:41
【摘要】第三節(jié)二、高階導(dǎo)數(shù)的運(yùn)算法則一、高階導(dǎo)數(shù)的概念高階導(dǎo)數(shù)、隱函數(shù)及由參數(shù)方程所確定函數(shù)的導(dǎo)數(shù)三、隱函數(shù)的導(dǎo)數(shù)四、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)一、高階導(dǎo)數(shù)的概念速度即加速度即引例:變速直線運(yùn)動(dòng)定義.若函數(shù)的導(dǎo)數(shù)可導(dǎo),或即或類似地,二階導(dǎo)數(shù)的導(dǎo)數(shù)稱為三階導(dǎo)數(shù),階導(dǎo)數(shù)的導(dǎo)數(shù)稱為n階導(dǎo)數(shù),
2025-05-03 18:03
【摘要】一、隱函數(shù)的導(dǎo)數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導(dǎo)?隱函數(shù)求導(dǎo)法則:用復(fù)合函數(shù)求導(dǎo)法則直接對(duì)方程兩邊求導(dǎo).例1.,00????xyxdxdydxdyy
2025-07-27 06:04
【摘要】11(3)解:212sec2yxxx????y=(1sin)sin(cos)cosxxxxx????sincoscos2xxxx???3(3)解一:??y=sinsincosxxxx???3(3)解二:22si
2025-07-27 06:07
【摘要】北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducationalTechnologyCo.,Ltd讓更多的孩子得到更好的教育2020/12/131導(dǎo)數(shù)與微分一、導(dǎo)數(shù)的概念:::北京四中龍門網(wǎng)絡(luò)教育技術(shù)有限公司BeijingEtiantianNetEducatio
2024-11-10 18:56
【摘要】教你如何化整為零破難題教你如何規(guī)范解答不失分教你如何易錯(cuò)警示要牢記壓軸大題巧突破壓軸大題巧突破(四)利用導(dǎo)數(shù)研究函數(shù)的零點(diǎn)或方程的根[典例](2022·山東高考)(13分)設(shè)函數(shù)+c(e=28…是自然對(duì)數(shù)的底數(shù),c∈R).
2024-08-16 03:43
【摘要】反函數(shù)、復(fù)合函數(shù)、參數(shù)方程的求導(dǎo)法則數(shù)學(xué)系賀丹導(dǎo)數(shù)的計(jì)算2導(dǎo)數(shù)的計(jì)算3導(dǎo)數(shù)的計(jì)算4導(dǎo)數(shù)的計(jì)算5導(dǎo)數(shù)的計(jì)算即復(fù)合函數(shù)對(duì)自變量的導(dǎo)數(shù)等于函數(shù)對(duì)中間變量的導(dǎo)數(shù)乘以中間變量對(duì)自變量的導(dǎo)數(shù)。6導(dǎo)數(shù)的計(jì)算連鎖法則可以推廣到有限個(gè)中間變量的情形:7
2025-01-22 10:35