【摘要】一、微分方程在經(jīng)濟(jì)中的應(yīng)用二、小結(jié)第三節(jié)一階微分方程在經(jīng)濟(jì)學(xué)中的綜合應(yīng)用1.分析商品的市場價(jià)格與需求量(供應(yīng)量)之間的函數(shù)關(guān)系例1某商品的需求量x對價(jià)格p的彈性為3lnp?.若該商品的最大需求量為1200(即p=0時(shí),x=1200)(p的單位為元,x的單位為千克)試
2024-09-03 12:46
【摘要】一、可分離變量的微分方程二、齊次方程四、變量代換法解方程第二節(jié)一階微分方程三、一階線性微分方程五、小結(jié)與思考題一、可分離變量的微分方程()d()dgyyfxx?可分離變量的微分方程.425d2dyxyx?例如425d2d,yyxx???解法設(shè)函數(shù))(
2025-01-19 21:52
【摘要】第四節(jié)一階線性微分方程一階線性微分方程標(biāo)準(zhǔn)形式:)()(ddxQyxPxy??若Q(x)?0,0)(dd??yxPxy若Q(x)?0,稱為非齊次方程.1.解齊次方程分離變量兩邊積分得CxxPylnd)(ln????故通解為xxPCyd)(e???稱為齊次方程
2025-07-25 11:17
【摘要】微分方程在經(jīng)濟(jì)學(xué)中的應(yīng)用授課對象:經(jīng)濟(jì)學(xué)專業(yè)、國際貿(mào)易專業(yè)、財(cái)務(wù)管理專業(yè)授課學(xué)時(shí):2學(xué)時(shí)(90分鐘)授課目的:(1)學(xué)會(huì)解微分方程(2)體會(huì)建模思想和微分方程在經(jīng)濟(jì)學(xué)中應(yīng)用授課教師:張麗莉v全社會(huì)只生產(chǎn)一種產(chǎn)品,可以是消費(fèi)品,也可以是投資品;v儲(chǔ)蓄是國民收入的函數(shù);v生產(chǎn)過程中只用兩種生產(chǎn)要素,即勞動(dòng)
2025-07-22 01:57
【摘要】二、線性微分方程解的結(jié)構(gòu)三、二階常系數(shù)齊次線性方程解法五、小結(jié)思考題第五節(jié)二階常系數(shù)線性微分方程四、二階常系數(shù)非齊次線性方程解法一、定義一、定義0??????qyypy二階常系數(shù)齊次線性方程的標(biāo)準(zhǔn)形式)(xfqyypy??????二階常系數(shù)非齊次線性方程的標(biāo)準(zhǔn)形式二、線性微分方程的解的結(jié)構(gòu)
2024-09-03 12:45
【摘要】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2024-09-03 12:40
【摘要】第八章微分方程(組)§8-1微分方程(組)解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2
2025-01-15 11:26
【摘要】淺談微分方程模型在經(jīng)濟(jì)學(xué)中的應(yīng)用摘要:從實(shí)際問題出發(fā),研究如何應(yīng)用數(shù)學(xué)工具來分析具體的經(jīng)濟(jì)問題,并進(jìn)而影響決策。關(guān)鍵字:經(jīng)濟(jì)問題;處理決策;數(shù)學(xué)模型前言:當(dāng)今社會(huì),隨著經(jīng)濟(jì)的全球化和世界金融市場的不斷發(fā)展,各國越來越意識(shí)到在經(jīng)濟(jì)的騰飛中產(chǎn)生的問題的嚴(yán)重性。前不久的英國石油公司在墨西哥灣的原油泄漏,導(dǎo)致附近海域的生態(tài)直線下降。最近美國出臺(tái)的第二輪量化寬松的貨幣政策引來各國的一直聲討
2025-06-25 17:31
【摘要】YANGZHOUUNIVERSITY一階微分方程的機(jī)動(dòng)目錄上頁下頁返回結(jié)束習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問題解法及應(yīng)用第十二章YANGZHOUUNIVERSITY一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵
2025-07-20 23:41
【摘要】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個(gè)任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-26 03:56
【摘要】一、一階常系數(shù)齊次線性差分方程的求解二、一階常系數(shù)非齊次線性差分方程的求解第七節(jié)一階常系數(shù)線性差分方程三、小結(jié)一階常系數(shù)齊次線性差分方程的一般形式一階常系數(shù)非齊次線性差分方程的一般形式??1??2????.21次線性差分方程所對應(yīng)的一階常系數(shù)齊為注:)0(01為常數(shù)????aayyxx)(1xfayy
2024-09-03 12:47
【摘要】主要內(nèi)容典型例題第十章微分方程與差分方程習(xí)題課基本概念一階方程類型4.線性方程可降階方程線性方程解的結(jié)構(gòu)相關(guān)定理二階常系數(shù)線性方程解的結(jié)構(gòu)特征方程的根及其對應(yīng)項(xiàng)f(x)的形式及其特解形式高階方程待
2024-08-24 16:42
【摘要】目錄上頁下頁返回結(jié)束一階微分方程的習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問題解法及應(yīng)用第七章目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階
2024-11-06 16:13
【摘要】第六節(jié)經(jīng)濟(jì)學(xué)中的常用函數(shù)一、需求函數(shù)如果價(jià)格是決定需求量的最主要因素,可以認(rèn)為Q是P的函數(shù)。記作)(PfQ?則f稱為需求函數(shù).需求的含義:消費(fèi)者在某一特定的時(shí)期內(nèi),在一定的價(jià)格條件下對某種商品具有購買力的需要.,bPaQ??線性需求函數(shù):常見的需求函數(shù):2cPbPaQ???二次
2024-08-24 11:12