【正文】
參考文獻(xiàn) [1]B. Fraeijs de Veubeke, “ Displacement an equilibrium models in the finite element method” , stress Analysis, edited by . Zienkiewicz, Wiley, New York, 1965. [2]B. Fraeijs de Veubekd and . Zienkiewicz, “ Straienergy bounds in finiteelement analysis by slab analogy” J. Strain Analysis, Vol. 2, pp. 265271, 1967. [3]Z. Wieckowski, . Youn, and . Moon, “ Stressedbased finite element analysis of plane plasticity problems” , Int. J Numer. Meth. Engng., Vol. 44, pp. 15051525, 1999. [4]H. Chanda and . Tamma, “ Developments enpassig stress based finite element formulations for materially nonlinear static dynamic problems” , Comp. Struct.,Vol. 59, No. 3, pp. 583592, 1996. [5]M. Kaminski, “ Stochastic secondorder perturbation approach to the stressbased finite element method” , Int. J. Solids and Struct., Vol. 38, No. 21, pp. 38313852, 2020. [6]. Zienkiewicz and . Taylor, The Finite Element Method, McGrawHill, London, 2020. [7]. Gallagher, Finite Element Fundamentals, PrenticeHall, Englewood Cliffs, 1975. [8]. Cleghorn, 1980, Analysis and design of highspeed flexible mechanism, Ph. D. Thesis, University of Toronto. [9]. Cleghorn, R. G. Fenton, and B. Tabarrok, 1981, “ Finite element analysis of highspeed flexible mechanisms” , Mechanism and Machine Theory, 16(4), 407424. [10]. Cleghorn, . Fenton, and B. Tabarrok, 1984, “ Steadystate vibrational response of highspeed fexible mechanisms” , Mechanism and Machine Theory, 19(4/5)417423. [11]. Kuo, . Cleghorn and K. Behdinan, “ Stressbsed Finite Element Method for EulerBernoulli Beams” ,Transactions of the Canadian Society for Mechanical Engineering, Vol. 30(1), pp. 16, 2020. [12]. Kuo, . Cleghorn, and K. Behdinan “ Applicatons