freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

電子信息專業(yè)外文翻譯--at89c51的概況-電子信息(參考版)

2025-01-23 03:20本頁面
  

【正文】 this digital form is most useful when the microputer is to be connected to equipment which can only be switched on or off, where each bit might represent the state of a switch or actuator. To solve realworld problems, a microcontroller must have more than just a CPU, a program, and a data memory. In addition, it must contain hardware allowing the CPU to access information from the outside world. Once the CPU gathers information and processes the data, it must also be able to effect change on some portion of the outside world. These hardware devices, called peripherals, are the CPU’s window to the outside. The most basic form of peripheral available on microcontrollers is the general purpose I70 port. Each of the I/O pins can be used as either an input or an output. The function of each pin is determined by setting or clearing corresponding bits in a corresponding data direction register during the initialization stage of a program. Each output pin may be driven to either a logic one or a logic zero by using CPU instructions to pin may be viewed (or read.) by the CPU using program instructions. Some type of serial unit is included on microcontrollers to allow the CPU to municate bitserially with external devices. Using a bit serial format instead of bitparallel format requires fewer I/O pins to perform the munication function, which makes it less expensive, but slower. Serial transmissions are performed either synchronously or asynchronously. 。 The General Situation of AT89C51 Chapter 1 The application of AT89C51 Microcontrollers are used in a multitude of mercial applications such as modems, motorcontrol systems, air conditioner control systems, automotive engine and among others. The high processing speed and enhanced peripheral set of these microcontrollers make them suitable for such highspeed eventbased applications. However, these critical application domains also require that these microcontrollers are highly reliable. The high reliability and low market risks can be ensured by a robust testing process and a proper tools environment for the validation of these microcontrollers both at the ponent and at the system level. Intel Platform Engineering department developed an objectoriented multithreaded test environment for the validation of its AT89C51 automotive microcontrollers. The goals of this environment was not only to provide a robust testing environment for the AT89C51 automotive microcontrollers, but to develop an environment which can be easily extended and reused for the validation of several other future microcontrollers. The environment was developed in conjunction with Microsoft Foundation Classes (AT89C51). The paper describes the design and mechanism of this test environment, its interactions with various hardware/software environmental ponents, and how to use AT89C51. Introduction The 8bit AT89C51 CHMOS microcontrollers are designed to handle highspeed calculations and fast input/output operations. MCS 51 microcontrollers are typically used for highspeed event control systems. Commercial applications include modems, motorcontrol systems, printers, photocopiers, air conditioner control systems, disk drives, and medical instruments. The automotive industry use MCS 51 microcontrollers in enginecontrol systems, airbags, suspension systems, and antilock braking systems (ABS). The AT89C51 is especially well suited to applications that benefit from its processing speed and enhanced onchip peripheral functions set, such as automotive powertrain control, vehicle dynamic suspension, antilock braking, and stability control applications. Because of these critical applications, the market requires a reliable costeffective controller with a low interrupt latency response, ability to service the high number of time and event driven integrated peripherals needed in real time applications, and a CPU with above average processing power in a single package. The financial and legal risk of having devices that operate unpredictably is very high. Once in the market, particularly in mission critical applications such as an autopilot or antilock braking system, mistakes are financially prohibitive. Redesign costs can run as high as a $500K, much more if the fix means 2 back annotating it across a product family that share the same core and/or peripheral design flaw. In addition, field replacements of ponents is extremely expensive, as the devices are typically sealed in modules with a total value several times that of the ponent. To mitigate these problems, it is essential that prehensive te
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1