freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學-易錯易錯壓軸勾股定理選擇題專題練習(及答案)50(4)(參考版)

2025-04-05 04:46本頁面
  

【正文】 故本選項錯誤;B、對角互相平分,菱形、矩形都具有,故本選項錯誤;C、對角線相等菱形不具有,而矩形具有,故本選項正確D、對角線互相垂直,菱形具有而矩形不具有,故本選項錯誤,故選C.【點睛】本題考查了菱形的性質(zhì)及矩形的性質(zhì),熟練掌握矩形的性質(zhì)與菱形的性質(zhì)是解題的關鍵.26.C解析:C【分析】由AP+CP=AC得到=BP+AC,即計算當BP最小時即可,此時BP⊥AC,根據(jù)三角形面積公式求出BP即可得到答案.【詳解】∵AP+CP=AC,∴=BP+AC,∴BP⊥AC時,有最小值,設AH⊥BC,∵∴BH=3,∴,∵,∴,∴BP=,∴=AC+BP=5+=,故選:C.【點睛】此題考查等腰三角形的三線合一的性質(zhì),勾股定理,最短路徑問題,正確理解時點P的位置是解題的關鍵.27.C解析:C【分析】做點F做交AD于點H,因此要求出EF的長,只要求出EH和HF即可;由折疊的性質(zhì)可得BE=DE=9AE,在中應用勾股定理求得AE和BE,同理在中應用勾股定理求得BF,在中應用勾股定理即可求得EF.【詳解】過點F做交AD于點H.∵四邊形是四邊形沿EF折疊所得,∴ED=BE,CF=,∵ED=BE,DE=ADAE=9AE∴BE=9AE∵,AB=3,BE=9AE∴∴AE=4∴DE=5∴∴,,∴∴BF=5,EH=1∵,HF=3,EH=1∴故選:C.【點睛】本題考查了翻折變換,矩形的性質(zhì),勾股定理等知識,解題的關鍵是學會利用參數(shù)構(gòu)建方程解決問題.28.D解析:D【分析】根據(jù)題意,可分為已知的兩條邊的長度為兩直角邊,或一直角邊一斜邊兩種情況,根據(jù)勾股定理求斜邊即可.【詳解】當3和4為兩直角邊時,由勾股定理,得:;當3和4為一直角邊和一斜邊時,可知4為斜邊.∴斜邊長為或5.故選:D.【點睛】本題考查了勾股定理,關鍵是根據(jù)題目條件進行分類討論,利用勾股定理求解.29.B解析:B【分析】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形.【詳解】“趙爽弦圖”是由四個全等的直角三角形和中間的小正方形拼成的一個大正方形,如圖所示:故選B.【點睛】本題主要考查了勾股定理的證明,證明勾股定理時,用幾個全等的直角三角形拼成一個規(guī)則的圖形,然后利用大圖形的面積等于幾個小圖形的面積和化簡整理得到勾股定理.30.C解析:C【分析】設,對應的邊長為,根據(jù)題意,通過等邊三角形和勾股定理的性質(zhì),得,從而計算得到;設,對應的邊長為,通過圓形面積和勾股定理性質(zhì),得,從而計算得到,即可得到答案.【詳解】分別以直角三角形三邊為邊向外作等邊三角形,面積分別為,則,對應的邊長設為,根據(jù)題意得: ∴,∵ ∴∴以直角三角形三邊長為直徑向外作半圓,面積分別為,則,對應的邊長設為,根據(jù)題意得:∴,∵∴∴∴故選:C.【點睛】本題考查了勾股定理、等邊三角形、圓形面積的知識;解題的關鍵是熟練掌握勾股定理、等邊三角形面積計算的性質(zhì),從而完成求解.。DB中,由勾股定理得:A39。D⊥BG于D,∵AE=A39。B=20cm,延長BG,過A39。連接A39。a,即2bc>a 2 ,∵(bc) 2 ≥0,∴b 2 +c 2 2bc≥0,b 2 +c 2 ≥2bc,∴b 2 +c 2 >a 2 ,∴一定為銳角,故選A.【點睛】本題考查了三角形三邊關系、完全平方公式、不等式的傳遞性、勾股定理等,題目較難,得出b 2 +c 2 >a 2 是解題的關鍵.17.A解析:A【分析】分別求出以AB、AC、BC為直徑的半圓及△ABC的面積,再根據(jù)S陰影=S1+S2+S△ABCS3即可得出結(jié)論.【詳解】解:如圖所示:∵∠BAC=90176。又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,EF=8,由勾股定理可知CE2+CF2=EF2=64.故選:D.【點睛】此題考查角平分線的定義,直角三角形的判定,勾股定理的運用,解題關鍵在于掌握各性質(zhì)定義.15.B解析:B【分析】依據(jù)作圖即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,進而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【詳解】如圖所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠AC
點擊復制文檔內(nèi)容
公司管理相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1