freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

煙臺市八年級數(shù)學試卷易錯易錯壓軸勾股定理選擇題精選及答案(1)(參考版)

2025-04-05 01:38本頁面
  

【正文】 ∴ 由勾股定理得, ∴邊長為a的等邊三角形的面積為aa=a2,故選:C.【點睛】本題考點涉及等邊三角形的性質、含30176。角所對的直角邊等于斜邊的一半,得出BD,利用勾股定理即可求出AD,再利用三角形面積公式即可解決問題.【詳解】解:如圖作AD⊥BC于點D.∵△ABC為等邊三角形,∴∠B=60176。∴BE=ABAE=106=4,∠DEB=90176。52+122=132,能構成直角三角形,故此選項不符合題意;D.12+22≠()2,不能構成直角三角形,故此選項符合題意;B.D=∴則該圓柱底面周長為24cm.故選:D.【點睛】本題考查了平面展開最短路徑問題,將圖形展開,利用軸對稱的性質和勾股定理進行計算是解題的關鍵.同時也考查了同學們的創(chuàng)造性思維能力.17.C解析:C【分析】本題根據(jù)所給的條件得知,△ABC是直角三角形,再根據(jù)三角形的面積相等即可求出BC邊上的高.【詳解】∵AB=8,BC=10,AC=6,∴62+82=102,∴△ABC是直角三角形,∠BAC=90176。E=DG=4cm,∴BD=16cm,Rt△A39。作A39。B交EG于F,則螞蟻吃到蜂蜜需爬行的最短路徑為AF+BF的長,即AF+BF=A39。AB=4cm,AC=3cm,BC=5cm,∴以AB為直徑的半圓的面積S1=2π(cm2);以AC為直徑的半圓的面積S2=π(cm2);以BC為直徑的半圓的面積S3=π(cm2);S△ABC=6(cm2);∴S陰影=S1+S2+S△ABCS3=6(cm2);故選A.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關鍵.16.D解析:D【分析】將容器側面展開,建立A關于EG的對稱點A′,根據(jù)兩點之間線段最短可知A′B的長度即為所求.【詳解】解:如圖:將圓柱展開,EG為上底面圓周長的一半,作A關于E的對稱點A39。.∵∠ABD=∠ACE,∴∠ACE+∠DBC=45176。.∴BD⊥CE.本結論正確.③∵△ABC為等腰直角三角形,∴∠ABC=∠ACB=45176?!唷螦CE+∠DBC=45176。在Rt△ABD中,根據(jù)勾股定理得:BD===4BC=2BD=24=8.故選C.【點睛】本題考查了等腰三角形的性質及勾股定理,熟練掌握性質定理是解題的關鍵.11.C解析:C【解析】試題分析:①∵∠BAC=∠DAE=90176。又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=ACAE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選B.【點睛】本題考查了平行線的性質、全等三角形的判定和性質、勾股定理.解題的關鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.9.B解析:B【分析】本題考查三角形的中線定義,根據(jù)條件先確定ABC為直角三角形,再根據(jù)勾股定理求得 ,最后根據(jù)求解即可.【詳解】解:如圖,在中,邊上的中線,∵CD=3,AB= 6,∴CD=3,AB= 6,∴CD= AD= DB , ,∵,∴,∴是直角三角形,∴,又∵,∴,∴,又∵,∴,故選B.【點睛】本題考查三角形中位線的應用,熟練運用三角形的中線定義以及綜合分析、解答問題的能力,關鍵要懂得:在一個三角形中,如果獲知一條邊上的中線等于這一邊的一半,那么就可考慮它是一個直角三角形,通過等腰三角形的性質和內角和定理來證明一個三是直角三角形.10.C解析:C【分析】根據(jù)等腰三角形的三線合一得出∠ADB=90176。DE⊥BC于E,∴在Rt△DBE中,BE2+DE2=BD2,BE=DE,∴BD=BE,故①正確;∵DE⊥BC,BF⊥DC,∴∠BHE和∠C都是∠HBE的余角,∴∠BHE=∠C,又∵在?ABCD中,∠A=∠C,∴∠A=∠BHE,故②正確;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四邊形ABCD為平行四邊形,∴AB=CD,∴AB=BH,故③正確;利用已知條件不能得到△BCF≌△DCE,故④錯誤,故選A.【點睛】本題考查了平行四邊形的性質、等腰直角三角形的判定與性質、勾股定理、全等三角形的判定與性質等,熟練掌握相關
點擊復制文檔內容
化學相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1