【摘要】 第三章 空間向量與立體幾何 空間向量及其運(yùn)算 空間向量及其加減運(yùn)算 備課資源參考 教學(xué)建議 ,要結(jié)合空間圖形,觀察分析各向量在圖形中的表示,然后運(yùn)用運(yùn)算法則,把空間向量轉(zhuǎn)...
2025-04-03 03:45
【摘要】 空間向量的數(shù)量積運(yùn)算 備課資源參考 教學(xué)建議 ,最主要的是將幾何問(wèn)題轉(zhuǎn)化為向量問(wèn)題,直線垂直可直接轉(zhuǎn)化為向量垂直,線面垂直可先轉(zhuǎn)化為線線垂直,進(jìn)而轉(zhuǎn)化為向量垂直;線線角、線面角...
2025-04-03 01:44
【摘要】 第二課時(shí) 用向量方法解決垂直問(wèn)題 備課資源參考 教學(xué)建議 :取兩條直線的方向向量a,b,驗(yàn)證a·b=0. :設(shè)直線l的方向向量為a,平面α的法向量為u,驗(yàn)證:a·u=0. :...
2025-04-03 03:18
【摘要】 空間向量運(yùn)算的坐標(biāo)表示 備課資源參考 教學(xué)建議 、垂直問(wèn)題時(shí),首先要建立恰當(dāng)?shù)目臻g直角坐標(biāo)系,計(jì)算出相關(guān)點(diǎn)的坐標(biāo),進(jìn)而寫(xiě)出向量的坐標(biāo),再結(jié)合向量平行、垂直的條件進(jìn)行論證,最后轉(zhuǎn)...
2025-04-03 03:38
【摘要】 空間向量的數(shù)乘運(yùn)算 備課資源參考 教學(xué)建議 (1)向量共線的充要條件:對(duì)空間任意兩個(gè)向量a,b(b≠0),a∥b的充要條件是存在實(shí)數(shù)λ,使a=λb. (2)空間任意三點(diǎn)共...
2025-04-03 03:22
【摘要】 第四課時(shí) 用向量方法求空間中的距離 備課資源參考 教學(xué)建議 ,我們主要研究點(diǎn)到平面的距離,直線和平面的距離及兩個(gè)平行平面之間的距離,其重點(diǎn)是點(diǎn)到直線,,一般要利用面面垂直的性質(zhì)來(lái)...
2025-04-03 02:42
【摘要】 立體幾何中的向量方法 第一課時(shí) 用向量方法解決平行問(wèn)題 備課資源參考 教學(xué)建議 ,是實(shí)現(xiàn)空間問(wèn)題的向量解決的媒介. ,主要運(yùn)用了直線的方向向量和平面的法向量,同時(shí)也要借助空...
2025-04-03 03:57
【摘要】 第三課時(shí) 用向量方法求空間中的角 備課資源參考 教學(xué)建議 ,簡(jiǎn)單易掌握,其基本程序是選基底,表示兩直線的方向向量,計(jì)算數(shù)量積,若能建立空間直角坐標(biāo)系,則更為方便. 結(jié)論:設(shè)A∈...
2025-04-03 03:35
【摘要】 空間向量的正交分解及其坐標(biāo)表示 備課資源參考 教學(xué)建議 ,因此能用坐標(biāo)法的應(yīng)優(yōu)先考慮用坐標(biāo)法,如長(zhǎng)方體、正方體中的問(wèn)題一般用這種方法,有些問(wèn)題中向量的坐標(biāo)不易求出,這樣的問(wèn)題就...
2025-04-03 03:50
【摘要】高中新課標(biāo)數(shù)學(xué)選修(2-1)《空間向量與立體幾何》測(cè)試題一、選擇題1.空間的一個(gè)基底??,,abc所確定平面的個(gè)數(shù)為()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)以上答案:2.已知(121)A?,,關(guān)于面xOy的對(duì)稱點(diǎn)為B,而B(niǎo)關(guān)于x軸的對(duì)稱點(diǎn)為C,則BC?(
2024-11-19 13:15
【摘要】章末歸納總結(jié)1.空間向量的概念及其運(yùn)算與平面向量類似,向量加、減法的平行四邊形法則,三角形法則以及相關(guān)的運(yùn)算律仍然成立.空間向量的數(shù)量積運(yùn)算、共線向量定理、共面向量定理都是平面向量在空間中的推廣,空間向量基本定理則是向量由二維到三維的推廣.2.a(chǎn)·b=0?a⊥b是數(shù)形結(jié)合的紐帶之一,這是運(yùn)用空間向量研究線線、線面、面面垂直的關(guān)鍵,通??梢耘c
2024-11-21 19:50
【摘要】第三章質(zhì)量評(píng)估檢測(cè)時(shí)間:120分鐘滿分:150分一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.若A,B,C,D為空間不同的四點(diǎn),則下列各式為零向量的是()①AB→+2BC→+2CD→+DC→;②2AB→+
2024-12-07 11:33
【摘要】章末歸納總結(jié)一、選擇題1.已知向量a=????8,12x,x,b=(x,1,2),其中xa∥b,則x的值為()A.8B.4C.2D.0[答案]B[解析]解法一:x=8,2,0時(shí)都不滿足a∥b.而x=4時(shí),a=(8,2,4)=
2024-11-19 21:17
【摘要】立體幾何初步復(fù)習(xí)(三)---------空間角(一)知識(shí)回顧,整體認(rèn)識(shí)1.異面直線所成角;定義:范圍:圖形2.直線與平面所成角;定義:范圍:圖形3.二面角.定義:圖形求解步驟:作——證——指——求——答(二)應(yīng)用舉例,深化鞏固△AB
2024-11-23 23:24
【摘要】立體幾何初步復(fù)習(xí)(二)1、如圖,在底面為平行四邊形的四棱錐PABCD?中,點(diǎn)E是PD的中點(diǎn).求證://PB平面AEC;2、如圖,在正方體ABCD-A1B1C1D1中,求證:面AB1D1∥面BDC1
2024-12-08 23:44