freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

勾股定理選擇題題分類匯編(附答案)(參考版)

2025-04-01 23:18本頁面
  

【正文】 b2+c2=a2,∴c2=a2b2=∴的面積==故此題選B【點睛】此題考察勾股定理的運用,用直角三角形的三邊分別表示三個等邊三角形的面積,運用勾股定理的等式求得第三個三角形的面積29.C解析:C【分析】連接AB,求出AB、BM、AM的長,根據(jù)勾股定理逆定理即可求證為直角三角形,而AM=BM,即為等腰直角三角形,據(jù)此即可求解.【詳解】連接AB∵,∴∴為等腰直角三角形∴故選C.【點睛】本題考查了勾股定理的逆定理,重點是求出三條邊的長,然后證明為直角三角形.30.B解析:B【分析】如圖,作與E,利用勾股定理的逆定理證明,再利用面積法求出EC即可.【詳解】如圖,作與E.是的中線,BC=12,BD=6, ,故選B.【點睛】本題主要考查勾股定理的逆定理,三角形的面積等知識,解題的關鍵是熟練掌握基本知識,學會面積法求三角形的高.。B與直線b的交點即為N,過N作MN⊥a于點M.則A39?!郆E⊥DG.故②結論正確.③如圖所示,連接BD、EG,由②知,BE⊥DG,則在Rt△ODE中,DE2=OD2+OE2,在Rt△BOG中,BG2=OG2+OB2,在Rt△OBD中,BD2=OD2+OB2,在Rt△OEG中,EG2=OE2+OG2,∴DE2+BG2=(OD2+OE2)+(OB2+OG2)=(OD2+OB2)+(OE2+OG2)=BD2+EG2.在Rt△BCD中,BD2=BC2+CD2=2a2,在Rt△CEG中,EG2=CG2+CE2=2b2,∴BG2+DE2=2a2+2b2.故③結論正確.故選:D.點睛:本題考查了旋轉的性質、全等三角形的判定與性質、正方形的性質.27.B解析:B【解析】【分析】MN表示直線a與直線b之間的距離,是定值,只要滿足AM+NB的值最小即可.過A作直線a的垂線,并在此垂線上取點A′,使得AA′=MN,連接A39?!螩BM∠BMC,∠DOM=180176。故③錯誤;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE為等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE2=BD2+DE2=BD2+2AD2,在Rt△BDC中,而BC2=2AB2,∴BD22AB2,∴故④錯誤,綜上,正確的個數(shù)為2個.故選:B.【點睛】此題考查了全等三角形的判定與性質,勾股定理,以及等腰直角三角形的性質,熟練掌握全等三角形的判定與性質是解本題的關鍵.25.B解析:B【分析】要求長方體中兩點之間的最短路徑,最直接的作法,就是將長方體展開,然后利用兩點之間線段最短解答.【詳解】解:根據(jù)題意,如圖所示,最短路徑有以下三種情況:(1)沿,剪開,得圖;(2)沿,剪開,得圖;(3)沿,剪開,得圖;綜上所述,最短路徑應為(1)所示,所以,即.故選:B.【點睛】此題考查最短路徑問題,將長方體從不同角度展開,是解決此類問題的關鍵,注意不要漏解.26.D解析:D【解析】分析:由四邊形ABCD與四邊形EFGC都為正方形,得到四條邊相等,四個角為直角,利用SAS得到三角形BCE與三角形DCG全等,利用全等三角形對應邊相等即可得到BE=DG,利用全等三角形對應角相等得到∠CBM=∠MDO,利用等角的余角相等及直角的定義得到∠BOD為直角,利用勾股定理求出所求式子的值即可.詳解:①∵四邊形ABCD和EFGC都為正方形,∴CB=CD,CE=CG,∠BCD=∠ECG=90176。∴∠ABD+∠DBC=45176?!唷螧DC=90176。+45176?!唷螦CE+∠DBC=45176。;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出關系式,等量代換即可作出判斷.【詳解】解:如圖,① ∵∠BAC=∠DAE=90176。又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=ACAE=200,從B到E有兩種走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故選B.【點睛】本題考查了平行線的性質、全等三角形的判定和性質、勾股定理.解題的關鍵是證明△ABC≌△DEA,并能比較從B到E有兩種走法.24.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性質得到夾角相等,利用SAS得出三角形ABD與三角形ACE全等,由全等三角形的對應邊相等得到BD=CE;②由三角形ABD與三角形ACE全等,得到一對角相等,再利用等腰直角三角形的性質及等量代換得到BD垂直于CE;③由等腰直角三角形的性質得到∠ABD+∠DBC=45176。角所對的直角邊等于斜邊的一半是解題的關鍵.16.C解析:C【分析】首先畫出圓柱的側面展開圖,進而得到SC=12cm,F(xiàn)C=182=16cm,再利用勾股定理計算出SF長即可.【詳解】將圓柱的側面展開,蜘蛛到達目的地的最近距離為線段SF的長,由勾股定理,SF2=SC2+FC2=122+(1811)2=400,SF=20 cm,故選C.【點睛】本題考查了平面展開最短路徑問題,先根據(jù)題意把立體圖形展開成平面圖形后,再確定兩點之間的最短路徑.一般情況是兩點之間,線段最短.在平面圖形上構造直角三角形解決問題.17.D解析:D【分析】由(ab)(a2b2c2)=0,可得:ab=0,或a2b2c2=0,進而可得a=b或a2=b2+c2,進而判斷△ABC的形狀為等腰三角形或直角三角形.【詳解】解:∵(ab)(a2
點擊復制文檔內容
外語相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1