【總結(jié)】人教版高中數(shù)學(xué)必修5第三章不等式單元測試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)1.不等式x2≥2x的解集是( )A.{x|x≥2} B.{x|x≤2}C.{x|0≤x≤2} D.{x|x≤0或x≥2}2.下列說法正確的是( )A.a(chǎn)b?ac2bc2 B.a(chǎn)b?a2b2C.a(chǎn)>
2025-06-18 13:49
【總結(jié)】一對一個性化輔導(dǎo)教案課題不等式復(fù)習(xí)教學(xué)重點(diǎn)不等式求最值、線性規(guī)劃教學(xué)難點(diǎn)不等式求最值的方法教學(xué)目標(biāo)1、掌握基本不等式的應(yīng)用條件;2、熟悉基本不等式的常見變形。教學(xué)步驟及教學(xué)內(nèi)容一、課前熱身:回顧上次課內(nèi)容二、內(nèi)容講解:1、基本不等式的形式;2、基本不等式的應(yīng)用條
2025-04-17 12:39
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第3章不等式綜合測試北師大版必修5(時間:120分鐘滿分:150分)第Ⅰ卷(選擇題共60分)一、選擇題(本大題共12個小題,每小題5分,共60分,每小題有4個選項(xiàng),其中有且僅有一個是正確的,把正確的選項(xiàng)填在答題卡中)1.若1a1b0,則下列不等式:
2024-12-05 06:35
【總結(jié)】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.如圖是在北京召開的第24界國際數(shù)學(xué)家大會的會標(biāo),會標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計的,顏色的明暗使它看上去像一個風(fēng)車,代表中國人民熱情好客.在正方形ABCD中有4個全等的直角三角形,設(shè)直角三
2024-12-08 02:37
【總結(jié)】第2課時不等式的性質(zhì)..建筑設(shè)計規(guī)定,民用住宅的窗戶面積必須小于地板面積.但按采光標(biāo)準(zhǔn),窗戶面積與地板面積的比值應(yīng)不小于10%,且這個比值越大,住宅的采光條件越好.試問:同時增加相等的窗戶面積和地板面積,住宅的采光條件是變好了,還是變壞了?請說明理由.問題1:在上述情境中假設(shè)原住
【總結(jié)】第三章綜合檢測(時間:120分鐘滿分:150分)一、選擇題(本大題共12個小題,每個小題5分,共60分,每小題給出的四個備選答案中,有且僅有一個是符合題目要求的)1.a(chǎn)、b∈R下列命題正確的是()A.若a>b,則a2>b2B.若|a|>b,則a2>b2C.若a>|
2024-11-28 00:02
【總結(jié)】高中數(shù)學(xué)必修5__第三章《不等式》復(fù)習(xí)知識點(diǎn)總結(jié)與練習(xí)(一)第一節(jié)不等關(guān)系與不等式[知識能否憶起]1.實(shí)數(shù)大小順序與運(yùn)算性質(zhì)之間的關(guān)系a-b>0?a>b;a-b=0?a=b;a-b<0?a<b.2.不等式的基本性質(zhì)性質(zhì)性質(zhì)內(nèi)容注意對稱性ab?bb,bc?ac?可加性a>
【總結(jié)】本課時欄目開關(guān)填一填研一研練一練§(一)學(xué)習(xí)要求1.理解均值不等式的內(nèi)容及證明.2.能熟練運(yùn)用均值不等式來比較兩個實(shí)數(shù)的大?。?.能初步運(yùn)用均值不等式證明簡單的不等式.學(xué)法指導(dǎo)1.應(yīng)用均值不等式解決有關(guān)問題必須緊扣它的適用條件,公式a2+b2≥2
2025-01-13 21:04
【總結(jié)】人教版高中數(shù)學(xué)必修5第三章不等式單元測試題及答案一、選擇題(本大題共10小題,每小題5分,共50分)5、不等式的解集是()A{x|-1<x<3}B{x|x>3或x<-1}C{x|-3<x<1}
2025-06-23 00:06
【總結(jié)】第5課時基本不等式,能借助幾何圖形說明基本不等式的意義.(小)值.“一正二定三相等”.問題1上述情境中,正方形的面積為,4個直角三角形的面積的和,由于4個直角三角形的面積之和不大于正方形的面積,于是就可以得到一個不等式:,我們稱之為重要不等
2024-11-17 23:14
【總結(jié)】陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué)第三章二元一次不等式(組)與平面區(qū)域典型例題素材北師大版必修5【例1】畫出下列不等式表示的區(qū)域:(1);(2).【例2】某人準(zhǔn)備投資1200萬興辦一所完全中學(xué),對教育市場進(jìn)行調(diào)查后,他得到了下面的數(shù)據(jù)表格(以班級為單位):學(xué)段班級學(xué)生人數(shù)配備教師數(shù)硬件建設(shè)/萬元
2024-11-19 08:03
【總結(jié)】第三章概率測評B(高考體驗(yàn)卷)(時間:90分鐘滿分:100分)一、選擇題(本大題共10小題,每小題5分,共50分)1.(2021湖北孝感高一期末檢測)下列四個命題:①對立事件一定是互斥事件;②若A,B為兩個事件,則P(A+B)=P(A)+P(B);③若事件A,B,C兩兩互斥,則P(A)+P(
2024-12-04 20:39
【總結(jié)】2021/1/61高中數(shù)學(xué)復(fù)習(xí)課代數(shù)第五章不等式第一課時[知識要點(diǎn)]本章的知識要點(diǎn)包括:不等式、不等式的性質(zhì)、不等式的證明、不等式的解法、含有絕對值的不等式。這些知識點(diǎn)間和內(nèi)在
2024-11-30 12:27
【總結(jié)】均值不等式如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當(dāng)時,當(dāng)abba222??1.指出定理適用范圍:Rba?,2.強(qiáng)調(diào)取“=”的
2025-03-13 05:16
【總結(jié)】基本不等式課時目標(biāo);.1.如果a,b∈R,那么a2+b2____2ab(當(dāng)且僅當(dāng)______時取“=”號).2.若a,b都為____數(shù),那么a+b2____ab(當(dāng)且僅當(dāng)a____b時,等號成立),稱上述不等式為______不等式,其中________稱為a,b的算術(shù)平均數(shù),___
2024-12-05 06:37