【總結】知識回顧1.圓的標準方程;2.圓的一般方程;3.點、直線、圓與圓的位置關系。問題探究所對對邊的一半。一邊的距離等于這條邊互相垂直,求證圓心到形的對角線:已知內接于圓的四邊 探究1BACDOO’。,求證:相交于點、,, 上,且,在邊分別、中,點:等邊 自我檢測CPAPPBEADCACEB
2025-03-12 14:59
【總結】研讀教材P11-P13:1.了解投影及其相關概念;2.投影的分類;3.研讀P12圖:如何得幾何體投影?研讀教材P12-P13:1.如何繪制幾何體的三視圖?三視圖間有哪些聯(lián)系?2.繪出圖–5圓柱和圓錐的三視圖,請你總結一下幾何體的三視圖研究方法?3.思考圖
2025-03-12 14:39
【總結】研讀教材P16:1.學習教材例1“用斜二測畫法畫水平放置的正六邊形的直觀圖?!盕EADBC2.請通過學習歸納斜二測畫法畫平面圖形的直觀圖的基本步驟及其特點3.利用斜二測畫法畫水平放置的正三角形與圓的直觀圖ABCO4.如圖,△A’B’C’是水平放置的平面圖形的直觀圖,請
【總結】直線和平面平行的判定(1)直線在平面內-----有無數(shù)個公共點??a如圖:(2)直線在平面外:??a①直線a和面α相交:aA???如圖:②直線a和面α平行://a?如圖:.Aa??a?a復習:直線與平面的位置關系有
2024-11-17 12:03
【總結】知識回顧直線的不同方程及適用范圍問題探究探究1:求下列直線的斜率以及與y軸的截距:-=--=--yxxy1451yx13312113(1)1=2(3);(2)。()探究2:(1)平面直角坐標系中的每一條直線都可以用一個關于x,y的二
2025-03-12 14:54
【總結】知識回顧1.直線的點斜式、斜截式方程及其適用范圍;2.若直線l1:y=k1x+b1,l2:y=k2x+b2;則l1//l2,l1⊥l2及l(fā)1與l2重合、相交的條件是什么?問題探究探究1:若直線l與x軸的截距為3,與y軸的截距為-4,求直線l的方
【總結】知識回顧1.直線的五種方程形式及適用范圍;2.直線的位置關系及其滿足的條件?;仡櫨毩暸袛嘞铝懈鲗χ本€的位置關系,如果相交,求出交點的坐標。(1)l1:x-y=0,l2:3x+3y-10=0;(2)l1:3x-y+4=0,l2:6x-2y-1=0;(3)l1:3x+4y-5=0,l2:6x+8
【總結】知識回顧1.解析幾何的一般方法;2.平面幾何中圓的定義,確定圓的要素。問題探究?)的估計內還是軌跡外在(,)請問點()的軌跡上?是否在(,)請問點(滿足什么方程?,中的,點的軌跡是什么?動,請問動點到原點的距離高于,中,動點)已知平面直角坐標系:(探究1)21(31)21(2)(5)(11MMyxyxPP
2025-03-12 14:58
【總結】空間中直線與直線的位置關系教材研讀A.研讀教材P44-P451.空間兩直線有怎樣的位置關系?2.完成P44觀察及P45探究部分,體會直線位置關系B.研讀教材P45-P471.P45平行公理及其作用B.研讀教材P45-P472.P46等角定理及其作用B.研讀教材P45-P473.
2025-03-12 14:29
【總結】直線與平面垂直的判定及其性質一、選擇題1.直線l與平面α內的兩條直線都垂直,則直線l與平面α的位置關系是()A.平行B.垂直C.在平面α內D.無法確定解析:選D當平面α內的兩條直線相交時,直線l⊥平面α,即l與α相交,當面α內的兩直線平行時,l?α或l∥α或l與α斜交
2024-12-09 03:42
【總結】研讀教材P2-P3與P6-P71.最基本的空間幾何體分類;2.構成基本空間幾何體的基本要素;3.簡單組合體的結構特征及其維度關系。1研讀教材P3-P4:基本多面體的結構特征1.棱柱的結構特征:(1)棱柱圖形及結構特征;(2)棱柱分類;(3)棱柱表示法;(4)棱柱的性質2
【總結】第1題.已知直線a,b和平面?,且ab?,a??,則b與?的位置關系是.答案:b?//或b??.第2題.已知兩個平面垂直,下列命題①一個平面內已知直線必垂直于另一個平面內的任意一條直線.②一個平面內的已知直線必垂直于另一個平面的無數(shù)條直線.③一個平面內的任
2024-12-02 10:15
【總結】教材研讀A.研讀教材P82-P83:1.教材在平面直角坐標系中提供了幾種確定直線位置的方法?2.直線的傾斜角α是如何定義的?3.直線的斜率k是如何定義的?是否每條直線都有斜率?通過這一問題的分析,教材提醒我們今后研究直線的斜率應注意哪些問題?4.初中階段,我們可以用函數(shù)解析式
【總結】問題探究探究1:已知平面上兩點P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過上訴探究,請問研究兩點距離你有幾種常用的分析策略?探究4:通已知A(-1,2),
【總結】知識回顧1.圓的標準方程;2.圓的一般方程;3.點P0(x0,y0)與圓(x-a)2+(y-b)2=r2的位置關系判斷;4.直線Ax+By+C=0與圓(x-a)2+(y–b)2=r2的位置關系。問題探究請求出公共弦長。的位置關系,若相交,與圓