【總結(jié)】基于BP神經(jīng)網(wǎng)絡(luò)的日負(fù)荷預(yù)測(cè)1BP神經(jīng)網(wǎng)絡(luò)人工神經(jīng)網(wǎng)絡(luò)(ArtificialNeuralNetworks,即ANN)是一種采用物理可實(shí)現(xiàn)的系統(tǒng)來(lái)模仿人腦神經(jīng)細(xì)胞的結(jié)構(gòu)和功能的系統(tǒng)。它是在現(xiàn)代神經(jīng)科學(xué)研究成果的基礎(chǔ)上提出的,試圖通過(guò)模擬大腦神經(jīng)網(wǎng)絡(luò)處理、記憶信息的方式進(jìn)行信息處理。人工神經(jīng)網(wǎng)絡(luò)是近年來(lái)十分熱門的交叉學(xué)科,它涉及生物、電子、計(jì)算機(jī)、數(shù)學(xué)和物理學(xué)科,有著非常廣泛
2025-06-19 15:40
【總結(jié)】第1頁(yè)共8頁(yè)例1采用動(dòng)量梯度下降算法訓(xùn)練BP網(wǎng)絡(luò)。訓(xùn)練樣本定義如下:輸入矢量為p=[-1-231-115-3]目標(biāo)矢量為t=[-1-111]解:本例的MATLAB程序如下:closeallclearechoonc
2024-08-21 02:44
【總結(jié)】武漢工程大學(xué)計(jì)算機(jī)學(xué)院第6章BP神經(jīng)網(wǎng)絡(luò)武漢工程大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院2一、內(nèi)容回顧二、BP網(wǎng)絡(luò)三、網(wǎng)絡(luò)設(shè)計(jì)四、改進(jìn)BP網(wǎng)絡(luò)五、內(nèi)容小結(jié)內(nèi)容安排武漢工程大學(xué)計(jì)算機(jī)科學(xué)與工程學(xué)院3一、內(nèi)容回顧?感知機(jī)?自適應(yīng)線性元件武漢工程大學(xué)
2025-05-28 01:43
【總結(jié)】使用RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行優(yōu)化冷藏庫(kù)的控制文摘:近年來(lái),先進(jìn)控制技術(shù)最優(yōu)控制冷藏。但仍有許多缺點(diǎn)。的一個(gè)主要問(wèn)題是,傳統(tǒng)方法不能實(shí)現(xiàn)在線預(yù)測(cè)最優(yōu)控制制冷系統(tǒng)的簡(jiǎn)單而有效的算法。一個(gè)RBF神經(jīng)網(wǎng)絡(luò)有很強(qiáng)的非線性映射能力,一個(gè)好的插值性能,價(jià)值和更高的訓(xùn)練速度。因此本文提出了一種兩級(jí)RBF神經(jīng)網(wǎng)絡(luò)。將測(cè)量值與預(yù)測(cè)值,兩級(jí)RBF神經(jīng)網(wǎng)絡(luò)用于在線預(yù)測(cè)最優(yōu)控制的冷藏溫度。新方法的應(yīng)用效果顯示一個(gè)巨大的
2025-08-07 11:17
【總結(jié)】學(xué)習(xí)神經(jīng)網(wǎng)絡(luò)的好助手,可以仿照其中的代碼,只需修改個(gè)別參數(shù)便可以輕易實(shí)現(xiàn)自己需要完成的任務(wù)。p=p1';t=t1';[pn,minp,maxp,tn,mint,maxt]=premnmx(p,t);%原始數(shù)據(jù)歸一化net=newff(minmax(pn),[5,1],{'tansig','purelin'},
2025-06-29 08:32
【總結(jié)】本科生畢業(yè)設(shè)計(jì)(論文)題目:姓名:學(xué)號(hào):學(xué)院:
2025-06-20 12:28
【總結(jié)】神經(jīng)網(wǎng)絡(luò)控制人工神經(jīng)元網(wǎng)絡(luò)模型與控制?引言?前向神經(jīng)網(wǎng)絡(luò)模型?動(dòng)態(tài)神經(jīng)網(wǎng)絡(luò)模型?神經(jīng)網(wǎng)絡(luò)PID控制?小結(jié)第一節(jié)引言模糊控制解決了人類語(yǔ)言的描述和推理問(wèn)題,為模擬人腦的感知推理等智能行為邁了一大步。但是在數(shù)據(jù)處理、自學(xué)習(xí)能力方面還有很大的差距。人工神經(jīng)網(wǎng)絡(luò)就是模擬人腦細(xì)胞的分
2025-01-05 15:34
【總結(jié)】多種結(jié)構(gòu)神經(jīng)網(wǎng)絡(luò)控制2神經(jīng)網(wǎng)絡(luò)控制的多種結(jié)構(gòu)神經(jīng)直接自校正控制神經(jīng)控制器NNC與對(duì)象串聯(lián),實(shí)現(xiàn)P的逆模型?P?1,且能在線調(diào)整。輸出y跟蹤輸入r的精度,取決于逆模型的精度。不足:開(kāi)環(huán)控制結(jié)構(gòu),不能有效的抑制擾動(dòng)。神經(jīng)直接自校正控制ru-y)?(
2024-10-16 20:00
【總結(jié)】摘要在信息化的社會(huì)里,圖像在信息傳播中所起的作用越來(lái)越大,而數(shù)字圖像在獲取與傳播中,可能會(huì)受到脈沖噪聲的污染。所以,消除產(chǎn)生的噪聲,保證圖像受污染度最小,成了數(shù)字圖像處理領(lǐng)域里的重要部分。本文主要針對(duì)數(shù)字圖像的脈沖噪聲污染問(wèn)題,采用一種窗口自適應(yīng)開(kāi)關(guān)中值濾波方法消除噪聲。利用BP神經(jīng)網(wǎng)絡(luò)將圖像中的每個(gè)像素點(diǎn)分類為信號(hào)點(diǎn)或噪聲點(diǎn),再采用改進(jìn)的中值濾波器對(duì)檢測(cè)后的圖像進(jìn)行濾波處理,根據(jù)
2025-06-19 15:42
【總結(jié)】基于MATLAB的BP神經(jīng)網(wǎng)絡(luò)應(yīng)用目錄1緒論...........................................................1人工神經(jīng)網(wǎng)絡(luò)的研
2024-08-27 15:23
【總結(jié)】青青衣衣BP神經(jīng)網(wǎng)絡(luò)在模式識(shí)別中的應(yīng)用青青衣衣BP神經(jīng)網(wǎng)絡(luò)在數(shù)字識(shí)別中的應(yīng)用?數(shù)字字符識(shí)別技術(shù)在大規(guī)模數(shù)據(jù)統(tǒng)計(jì),郵件分揀,汽車牌照、支票、財(cái)務(wù)、稅務(wù)、金融等有關(guān)數(shù)字編號(hào)的識(shí)別方面得到廣泛應(yīng)用,因此成為多年來(lái)研究的一個(gè)熱點(diǎn)。?BP神經(jīng)網(wǎng)絡(luò)具有良好的容錯(cuò)能力、強(qiáng)大的分類能力、自適應(yīng)和自學(xué)習(xí)等特點(diǎn),備受人們的重視,在字符識(shí)別領(lǐng)域得到了廣泛的應(yīng)用。
2025-02-08 21:15
【總結(jié)】基于BP算法的神經(jīng)網(wǎng)絡(luò)技術(shù)畢業(yè)論文目錄第一章引言 1神經(jīng)網(wǎng)絡(luò)的概述 1 1 2 2 3 3神經(jīng)網(wǎng)絡(luò)的應(yīng)用領(lǐng)域 3第二章BP神經(jīng)網(wǎng)絡(luò)概述 5BP神經(jīng)網(wǎng)絡(luò)介紹 5神經(jīng)元 5 5 9BP神經(jīng)網(wǎng)絡(luò)原理 9BP神經(jīng)網(wǎng)絡(luò)的主要功能 11BP神經(jīng)網(wǎng)絡(luò)的優(yōu)點(diǎn)和缺點(diǎn) 12第三章BP神經(jīng)網(wǎng)絡(luò)的應(yīng)用
2025-06-22 01:33
【總結(jié)】人工神經(jīng)網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)控制陸寶春2023年11月人工神經(jīng)網(wǎng)絡(luò)與神經(jīng)網(wǎng)絡(luò)控制1人工神經(jīng)網(wǎng)絡(luò)概述2人工神經(jīng)網(wǎng)絡(luò)發(fā)展3人工神經(jīng)網(wǎng)絡(luò)模型4神經(jīng)網(wǎng)絡(luò)的工作方式及其特點(diǎn)5神經(jīng)網(wǎng)絡(luò)的設(shè)計(jì)開(kāi)發(fā)過(guò)程6人工神經(jīng)網(wǎng)絡(luò)的應(yīng)用7神經(jīng)網(wǎng)絡(luò)控制8凈水廠最佳投藥量的神經(jīng)網(wǎng)絡(luò)控制系統(tǒng)9神經(jīng)網(wǎng)絡(luò)控制中有
2025-02-28 14:04
【總結(jié)】使用RBF神經(jīng)網(wǎng)絡(luò)進(jìn)行優(yōu)化冷藏庫(kù)的控制文摘:近年來(lái),先進(jìn)控制技術(shù)最優(yōu)控制冷藏。但仍有許多缺點(diǎn)。的一個(gè)主要問(wèn)題是,傳統(tǒng)方法不能實(shí)現(xiàn)在線預(yù)測(cè)最優(yōu)控制制冷系統(tǒng)的簡(jiǎn)單而有效的算法。一個(gè)RBF神經(jīng)網(wǎng)絡(luò)有很強(qiáng)的非線性映射能力,一個(gè)好的插值性能,價(jià)值和更高的訓(xùn)練速度。因此本文提出了一種兩級(jí)RBF神經(jīng)網(wǎng)絡(luò)。將測(cè)量值與預(yù)測(cè)值,兩級(jí)RBF神經(jīng)網(wǎng)絡(luò)用于在線預(yù)測(cè)
2025-02-28 15:10
【總結(jié)】III基于遺傳算法的PID控制器參數(shù)優(yōu)化摘要PID控制器現(xiàn)已在工程實(shí)際中得到了廣泛的應(yīng)用??刂破鞯膮?shù)優(yōu)化與系統(tǒng)的穩(wěn)態(tài)工況有很大的聯(lián)系,是控制系統(tǒng)設(shè)計(jì)的核心內(nèi)容。因此,在目前PID控制器參數(shù)優(yōu)化的研究具有十分重大的工程實(shí)踐意義。課題是以Delphi為開(kāi)發(fā)平臺(tái),進(jìn)行基于遺傳算法的PID控制器參數(shù)優(yōu)化軟件的設(shè)計(jì)。本設(shè)計(jì)
2024-12-03 19:04