freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

論文中英文翻譯對照通過注射成型制造壓電陶瓷聚合物復(fù)合材料-wenkub.com

2025-07-24 12:11 本頁面
   

【正文】 and low cost in moderate to high volumes. In general, because of the high initial tooling cost, the ceramics injection molding process is best applied to plexshaped ponents which require low cost in high volumes. Figure 1 : Injection Molding Process Route. Figure 2: Preform Approach to Composite Fabrication.Composite Fabrication and EvaluationThe approach taken to fabricate 13 piezoelectric posites is shown in Figure 2a, which illustrates a PZT ceramic preform concept in which fiber positioning is achieved using a comolded integral ceramic base. After polymer encapsulation the ceramic base is removed by grinding. Aside from easlng the handling of many fibers, this preform approach allows broad latitude in the selection of piezoelectric ceramic element geometry for posite performance optimization. Tool design is important for successful injection molding of piezoelectric posites. The approach shown in Figure 2b uses shaped tool inserts to allow changes in part design without incurring excessive retooling costs. Figure 2c shows how individual preforms are configured to form larger arraysIn practice, material and molding parameters must be optimized and integrated with injection molding tool design to realize intact preform ejection after molding. Key parameters include: PZT/binder ratio, PZT element diameter and taper, PZT base thickness, tool surface finish, and the molded part ejection mechanism design. In order to evaluate these process parameters without incurring excessive tool cost, a tool design having only two rows of 19 PZT elements each has been adopted for experimental purposes. Each row contains elements having three taper angles (0, 1 and 2 degrees) and two diameters ( and l mm). To acmodate molding shrinkage, the size of the preform is maintained at 5Ox50mm to minimize the possibility of shearing off the outermost fibers during the cooling portion of the molding cycle.Figure 3 shows green ceramic preforms fabricated using this tool configuration. Note that all of the PZT elements ejected intact after molding, including those having no longitudinal tapering to facilitate ejection. Slow heating in air has been found to be a suitable method for organic binder removal. Finally, the burnedout preforms are sintered in a PbOrich atmosphere to 9798% of the theoretical density. No problems have been encountered with controlling the weight loss during sintering of these posite preforms, even for those finescale, highsurface area preforms which are intended for high frequency ultrasound.Figure 4 illustrates the surfaces of asmolded and assintered fibers, showing the presence of shallow fold lines approximately 10pm wide, which are characteristic of the injection molding process. The fibers exhibit minor grooving along their length due to ejection from the tool. Figure 5 shows the capability of near netshape molding for fabricating very fine scale preforms。 rapid throughput (typically seconds per part)。P634[3] S. D. Darrah等著,《大面積壓電復(fù)合材料》關(guān)于活性物質(zhì)和構(gòu)造的ADPA會議,亞歷山德里亞,十一月48日,1991年,埃德。通過陶瓷的注射成型來制造合成物型坯,之后使用型坯來形成大批生產(chǎn),此種方法已經(jīng)證明用于網(wǎng)狀大量制造壓電復(fù)合物傳感器。當(dāng)壓電陶瓷5H的原料物質(zhì)被考慮到受注射成型設(shè)備污染鐵的敏感性,這些有關(guān)的測量方法對于這種注射成型的壓電陶瓷材料可以忽略這類污染。圖6所示復(fù)合材料樣品使用剛才復(fù)合的壓電陶瓷/粘結(jié)劑混合物以及再生材料制造。那個沿其長度方向顯現(xiàn)出微小孔型設(shè)計的纖維取決于從工具中的脫模過程??諝庵械木徛訜嵋呀?jīng)被發(fā)現(xiàn)是一個適合去除有機(jī)粘合劑的方法。每一行的要素都包括三個錐角(0,1和2度)以及兩個直徑()。如圖2b所示的方法使用了無需導(dǎo)致額外重組成本的嵌入式的并允許局部變化的設(shè)計。 圖1 注射成型過程流程 圖2 制作合成物的預(yù)成型方法 合成物的制造及評價制造13壓電復(fù)合材料
點(diǎn)擊復(fù)制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1