【正文】
02 2002, 943948[5] L. Krupskiy, V. Meleshine, A. Nemchinov, Unified Model of the Asymmetrical Half Bridge for Three Important Topological Variations,” Proc, IEEE INTELEC’99, 1999, [6] 丁道宏,楊東平,串聯(lián)輸出諧振變換器開關特性和效率分析,電力電子技術,1994年第一期,29~32[7] 丁道宏,陳玉水,并聯(lián)輸出DCDC諧振變換器的穩(wěn)態(tài)輸出與數(shù)字仿真,南京航空航天大學學報,1994,26(2):177~186[8] 王衛(wèi),張雷,李可,半橋串并聯(lián)諧振電源的研究,哈爾濱工業(yè)大學學報,1996,28(1):69~75[9] 周偉成,3kW LLC諧振式模塊化通信電源,浙江大學電氣工程學院,2007[10] 李斌,串聯(lián)諧振技術在通信電源中的應用研究,合肥工業(yè)大學,2006[11] Canales F, Barbosa P, Lee FC. “A Wide Iuput Voltage and Load Output Variations Fixedfrequency ZVS DCDC LLC Resonant Converter for Highpower Applications”, Industry Applications Conference, 2002 .37th IAS Annual Meeting. Conference Record of the Volume 4, 1318 Oct. 2002 Page(s): 23062313 [12] Guisong Huang, Alpha , Yilei Gu, “LLC Series Resonant DCDC Converter”, US Patent, , 2002[13] Lazar, Martinelli R, “Steadystate Analysis of the LLC Series Resonant Converter”, IEEE APEC. Proceedings, Anaheim, USA, 2001, 605609[14] 黃貴松,顧亦磊,章進法,“LLC 串聯(lián)諧振直流直流變換器”,電源技術學報,2002,1(1):61~66[15] Bo Yang, Fred C. Lee, “LLC Resonant Converter for Front End DCDC Conversion”, Proc. IEEE APEC, ~1112 [16] V. Vorperian and S. Cuk., “Smallsignal Analysis of Resonant Converter, IEEE Power Electronics Specialist”, Conf. 1983, 269~282[17] Bo Yang, , and Alpha , “Passive Current Shaping for Series Resonant Converter”, VPEC2001[18] Bo Yang, , and Alpha , Guisong Huang, “Low Q Characteristic of Reries Resonant Converter and its Application”, VPEC2001[19] Rudy Severns, “Topologies for Three Elements Resonant Converter”, IEEE APEC, 712722[20] Jovanovic and , “DC Analysis of Halfbridge ZeroVoltageSwitched Multiresonant Converter”, IEEE Transactions on Power Electronics, April 1990[21] Yanjun Zhang, Dehong Xu, Min Chen, “LLC Resonant Converter for 48V to VRM”[22] Teng Liu, Ziying Zhou, Aiming Xiong, John Zeng and Jianping Ying, “A Novel Precise Design Method for LLC Series Resonant Converter”, IEEE APEC,2006[23] Bing Lu, Wenduo Liu, Yan Liang, Fred , Jacobus Wyk, “Optimal Methodology for LLC Resonant Converter”,IEEE,2006[24] 顧亦磊,呂征宇,“開關頻率為1MHz的多諧振變換器”,電源技術應用,2005,2(8),[25] 閆子波,“基于LLC的半橋零電壓開關諧振變換器”,集成電路應用,, 6871[26] 顧亦磊,呂征宇,錢照明,“一種新穎的三電平軟開關諧振型DC/DC變換器”,中國電機工程學報,2004,24(8),2428[27] 趙修科,8[28] Bo Yang, Regan Chen and Fred , “Integrated Magnetic for LLC Resonant Converter”, IEEE , 346351[29] David KiWai Cheng, LeungPong Wong, YimShu Lee, “Design, Modeling, and Analysis of Integrated Magnetic for Power Converter”, IEEE , 2002,1(2).320325[30] 朱立泓,LLC諧振變換器的設計,浙江大學電氣工程學院,2006[31] 宮力,LLC串聯(lián)諧振全橋DC/DC變換器的研究,華中科技大學,2006[32] Bo Yang, Fred , Matthew Concannon, “Over Current Protection Methods for LLC Resonant Converter”, IEEE, 2003附錄1:英文文獻LLC resonant full bridge power supply design and debuggingMassimoAiello, AntonioCataliotti, Member, IEEE, Valentina Cosentino, and Salvatore Nuccio Abstract—The deregulation of energy markets holds out new prospects for contracts between customers and utilities, in which the price of energy can depend on voltage quality and load characteristics, as well as on the responsibility for disturbances caused to supply voltage in power systems. In this context, harmonic source detection is one of the main problems because of equipment sensibility and the proliferation of loads which absorb nonsinusoidal currents. In this paper, the authors present a new instrument based on a timedomain method for the detection of harmonic active powers in threephase systems, which can be usefully applied even in the presence of unbalance or asymmetry. The amplitude and sign of harmonic powers can be measured directly, and no spectral analysis is required for the evaluation of the amplitudes and phase angles of supply currents. Moreover, the instrument is able to synchronize itself with the input signal to measure the total distortion factors of voltages and currents, supply voltage unbalance, and harmonic voltage amplitudes. Theoretical aspects are discussed, the measurement accuracy is evaluated, and the experimental results are presented. Finally, a parison is made with a mercial instrument. Index Terms—Harmonic analysis, harmonic distortion, phase locked loops (PLLs), power measurement, power quality, power system harmonics, power system measurements.In the last few years, there has been an increase in current and voltage distortion in distribution systems be cause of the development of loads, such as power electronic devices, which absorb nonsinusoidal currents. In practical situations, harmonic sources can be located both upstream and downstream of the metering section, so that both supply and load may be responsible for harmonic distortion。在這里,我要衷心的感謝在這次設計中指導我的尹斌老師,同時也要感謝同學們給我的建議。好在半導體技術的進步能很大幅度地降低芯片成本,因此,電源技術的數(shù)字化革命應該說號角已經吹響。這樣的效率特性是其他PWM型變換器所不具有的。結論與展望通過以上實驗波形和數(shù)據(jù),可以得出以下結論:(1)LLC串聯(lián)諧振變換器實現(xiàn)ZVS的負載范圍更寬,而通過合理設計諧振元件參數(shù),可以使變換器在空載條件下也能實現(xiàn)ZVS。 圖43 滿載時輸出整流二極管電壓電流和諧振電流波形:(左)300V(右)400V圖43反映的是變換器工作在額定輸入電壓下,輸出整流二極管處于臨界連續(xù)狀態(tài),此時諧振電感參與諧振的時間很短,幾乎從波形上看不出來,沒有環(huán)流損耗,效率較高。無論諧振變換器工作在何種輸入情況下,關斷時電流值基本上保持不變。不論在空載還是滿載時,隨著輸入電壓變大,它的工作頻率也變大。,得出結論。 ,參照第三章計算出來的數(shù)據(jù),進行參數(shù)導入:輸入電壓范圍和額定輸入電壓為:300~450V DC、500VDC輸出電壓和最大輸出功率:24VDC、120W諧振頻率和最大工作頻率頻率以及死區(qū)時間:100kHz、200kHz、500nS節(jié)點處的寄生電容:300pF(實驗選取IRF830,Coss為100p,Cstray為100p)按照上面設計步驟,考慮整流二極管壓降(),可以計算出參數(shù)如下:, :Ls=119uH,Lm=714uH,Cs=22nF,rs=,n=8,R=5,r=,C0=1000uF,Vi=400V,利用MATLAB進行仿真出頻率輸出頻率特性和零極點圖。實際中最常見最實用的方法就是采用采樣電阻或電流互感器對每個開關周期內諧振網絡輸入電流進行檢測,一旦發(fā)現(xiàn)多個開關周期內電流幅值連續(xù)大于設定電流值時,則封鎖驅動信號,關閉開關管。而該方法特別是對電源啟動時限制諧振電容上電壓和電流的大小非常有效。 圖310 加二極管鉗位限流保護電路 圖311有無鉗位二極管諧振電容電流和電壓的波形圖312 改善二極管鉗位方法針對上述電路存在的缺點,在這個電路的基礎上,有人提出針對單諧振電容結構的改善二極管鉗位法,見圖312,該鉗位方法通過輔助變壓器T2來實現(xiàn)的。在不加鉗位二極管之前,諧振電容CsCs2上電壓之和等于輸入電壓,而單個諧振電容上電壓不會被鉗位在輸入電壓。如果使用這種保護方法,變換器的控制器設計比較麻煩。在短路或過流下,只對控制方式進行改變,諧振電路工作在PWM方式。特別是在短路時幾乎所有伏秒值都加在諧振電感上,諧振電感體積足夠大才能保證諧振電感不飽和。當輸出電流在采樣電阻Rs上壓降大于設定參考電壓時,限流比較器輸出低電平使得光耦流過最大電流,此時控制芯片輸出最高頻率來限制原邊電流。第一種方法就是減小加在變換器輸入端的平均電壓。LLC諧振電路是諧振式,諧振網絡