【總結】2022年,世界數學家大會在北京召開,左圖是此次大會的會標,它標志著中國古代的數學成就,又像一只轉動著的風車,歡迎來自世界各地的數學家們.勾股定理(1)——探索勾股定理ABCSA=4SB=4SC=8正方形A、B、C的面積分別是多少?ABCSA=
2025-08-01 17:57
【總結】勾股定理復習考點(全)-經典一、知識要點:1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。
2025-04-16 23:55
【總結】探索勾股定理(1)數一數ABCABC議一議三個正方形A、B、C的面積之間的關系?ABCABC議一議2、三個正方形中間的直角三角形三邊關系是什么?1、三個正方形A、B、C的面積之間的關系?做一做分別以5cm和12cm為直角邊做直角三角形測量斜邊,看看是否還是有以上的規(guī)律?勾股定
2025-07-19 02:54
【總結】第一篇:勾股定理復習 《勾股定理復習》說課稿 李小英 一、教學內容與學情分析 1、本課內容在教材、新課標中的地位和作用 本節(jié)內容是《勾股定理》的復習。本章是以“勾股定理——平方根——立方根—...
2024-11-18 23:31
【總結】THANKS
2024-12-28 01:19
【總結】勾股定理(1)義務教育課程標準實驗教科書浙江版《數學》八年級上冊abc2020年國際數學家大會會標思考:如何求會標中陰影部分的面積?直角三角形兩直角邊的平方和等于斜邊的平方勾股定理直角三角形兩直角邊a、b的平方和,等于斜邊c的平方.a2+b2=c2.=c–bba
2024-10-12 17:07
【總結】課題勾股定理綜合復習講義學習目標1、勾股定理的證明、三角形形狀的判斷2、勾股定理的幾何應用3、最短距離及航海問題重點難點勾股定理的逆定理及其應用考點一:勾股定理(1)對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。(2)與直角三角形有關的結論:①
【總結】勾股定理復習考點一:已知直角三角形的兩邊求第三邊1、在Rt△ABC中,∠C=90°,a、b分別為直角邊,c為斜邊,求下列問題:(1)已知:a=5,b=12,則c=_____(2)已知:c=17,b=15,則c=_____(3)已知a:b=3:4,且c=10,則a=_____;b=_____2、已知△ABC中,∠B=90°,AC=13cm,BC=5
【總結】勾股定理的逆定理第1課時人教版初中數學八年級下冊第十八章勾股定理情境引入用一根釘上13個等距離結的細繩子,讓同學操作,用釘子釘在第一個結上,再釘在第4個結上,再釘在第8個結上,最后將第十三個結與第一個結釘在一起.然后用角尺量出最大角的度數.可以發(fā)現(xiàn)這個三角形是直角三角形.課中探究
2024-11-21 02:26
【總結】勾股定理和勾股定理逆定理經典例題題型一:直接考查勾股定理例1在△ABC中,∠C=90°(1)已知AC=6,BC=8,求AB的長;A(2)已知AB=17,AC=15,求BC的長.BC題型二:利用勾股定理測量長度1、如果梯子的底端離建筑物9m,那么15m長的梯子可以到達建筑物的高度是多少米?DABC2、如圖
2025-03-24 13:00
【總結】S3S2S1CBA1、如圖、臺風過后,瓊島小學的旗桿在B處折斷,旗桿頂部A落在離旗桿底部8米處,已知旗桿長16米,則旗桿是在離底部___米處斷裂.(第5題圖)B16025(第4題圖)ACB2、圖中字母B、代表的正方形的面積為
2024-11-22 01:16
【總結】第1頁共4頁初中數學勾股定理單元測試一、單選題(共12道,每道8分),其中所有的四邊形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的邊長分別是3,5,2,3,則最大正方形E的面積是()2.下列幾組數:①9,12,15;②,,;③,,
2024-08-20 13:26
【總結】第十七章勾股定理單元測試題一、選擇題1.若直角三角形的兩條直角邊長分別為3cm、4cm,則斜邊上的高為()AcmBcmC5cmDcm2.將直角三角形的三條邊長同時擴大同一倍數,得到的三角形是()A鈍角三角形B銳角三角形C直角三角形D等腰三角形
2025-03-24 12:59
【總結】勾股定理的應用1——圖形的翻折的導學案一、直角三角形的折疊問題展示直角三角形紙片1.已知△ABC中,∠B=90°,AB=4,BC=3,則AC=斜邊AC邊上的高AD=折疊1:將△ABC折疊,使點A與B重合(如圖1),則圖中有哪些相等的線段?求BD折疊2:將△ABC折疊,使點A與C重合(如圖2),(1
2025-06-22 03:47
【總結】第十八章勾股定理同步練習及單元檢測勾股定理(1)1.填空:(1)如圖,在下列橫線上填上適當的值:(2)求出下列各圖中陰影部分的面積(單位:cm2).圖(1)陰影部分的面積為____; 圖(2)陰影部分的面積為____;圖(3)陰影部分的面積為____;ACDB(3)直角三角形的兩直角邊
2025-07-07 13:07