【總結】第一篇:均值不等式教案 §均值不等式 【教學目標】 【教學重點】 掌握均值不等式 【教學難點】 利用均值不等式證明不等式或求函數(shù)的最值,【教學過程】 一、均值不等式: 均值定理...
2024-11-05 18:15
【總結】專題五一元一次方程復習目的:1、了解等式的概念,掌握等式的基本性質(zhì)。2、了解方程、方程的解及解方程的概念。3、了解一元一次方程,二元一次方程組及其標準形式、最簡形式。4、會列一元一次方程解應用題,并根據(jù)應用題的實際意義檢驗求值是否合理。5、能正確地列二元一次方程組解應用題??键c透視考點課標要求知識與技能目標了解理解掌握靈
2024-08-14 08:15
【總結】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-13 23:45
【總結】集合的運算與不等式的解法一.集合的運算:1.集合的表示方法:①列舉法②描述法例1:1指出下列集合中的元素是由什么構成的A={x|x2-1=0}B={x2-1=0}C={y|y=x2,x∈R}D={(x,y)|y=x2,x∈R}2已知方程組y=-4x
2024-11-10 01:24
【總結】不等式性質(zhì)兩個實數(shù)大小的比較ba1ba)2(ba1ba)1(,0b,a???????則若比商法比差法0baba0baba????????對稱性abba???傳遞性cacb,ba????加法單調(diào)性cbcaba?????移項法則bcacba?????乘法
2024-11-22 04:19
【總結】《不等式》復習小結(導學案)(集美中學楊正國)一、學習目標.會用不等式(組)表示不等關系;.熟悉不等式的性質(zhì),能應用不等式的性質(zhì)求解“范圍問題”,會用作差法比較大??;.會解一元二次不等式,熟悉一元二次不等式、一元二次方程和二次函數(shù)的關系;.會作二元一次不等式(組)表示的平面區(qū)域,會解簡單的線性規(guī)劃問題;.明確均值不等式及其成立條件,會靈活應用均值不等式證明或求解
2025-04-16 12:30
【總結】高二數(shù)學競賽班二試講義第一講琴生不等式、冪平均不等式一、知識要點:1.琴生不等式凸函數(shù)的定義:設連續(xù)函數(shù)的定義域為,對于區(qū)間內(nèi)任意兩點,都有,則稱為上的下凸(凸)函數(shù);反之,若有,則稱為上的上凸(凹)函數(shù)。琴生(Jensen)不等式(1905年提出):若為上的下凸(凸)函數(shù),則(想象邊形的重心在圖象的上方,個點重合時“邊形”的重心在圖
2024-08-13 18:32
【總結】精品資源不等式與不等式組單元測試班級姓名座號成績一、選擇題(每小題5分,共30分)1、若mn,則下列不等式中成立的是()A、m+ana2D、a-ma-n2、不等式的負整數(shù)解的個數(shù)為()A、0個
2025-03-24 05:47
【總結】精品資源不等式與不等式組(時間:45分鐘滿分:100分)姓名歡迎下載一、選擇題(每小題5分,共30分)1.若m>n,則下列不等式中成立的是()A.m+a<n+bB.ma<nbC.ma2>na2D.a(chǎn)m<an2.不等式4(x2)>2(3x+5)的非負整數(shù)解的個
2025-06-29 17:09
【總結】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實際問題.其中,以不等式(組)為工具分析問題、解決問題是重點,也是教學中的主要難點;一元一次不等式(組)及其相關概念、不等式的性質(zhì)是基礎知識;掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【總結】不等式與不等式典型例題例320xxm??????有解,則m的取值范圍是:。010axx???????無解,則a的取值范圍是:。例202350xabxab?????????的解集為-1x&
2025-07-23 23:04
【總結】河南省泌陽縣職業(yè)教育中心周祥松指數(shù)不等式的解法是利用指數(shù)函數(shù)的性質(zhì)化為同解的代數(shù)不等式);()();()(10);()();()(1)()()()()()()()(xgxfaaxgxfaa時,axgxfaaxgxfaa時,axgxfxgxfxgxf
2025-05-09 00:31
2024-08-24 22:11
【總結】第一篇:基本不等式教案 基本不等式 【教學目標】 1、掌握基本不等式,能正確應用基本不等式的方法解決最值問題 2、用易錯問題引入要研究的課題,通過實踐讓同學對基本不等式應用的二個條件有進一步的...
2024-10-28 11:37
【總結】不等式的性質(zhì)(復習課)一、基礎知識1、兩個數(shù)的大小關系a>ba-b>0a<ba-b<0a=ba-b=02、比較兩個數(shù)的大小的方法作差變形判斷符號得出結論3、作
2024-08-14 19:30