【總結(jié)】高中數(shù)學(xué)必修一知識(shí)點(diǎn) 高一數(shù)學(xué)必修1第三章知識(shí)點(diǎn) 第三章函數(shù)的應(yīng)用 一、方程的根與函數(shù)的零點(diǎn) 1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù)yf(x)(xD),把使f(x)0成立的實(shí)數(shù)x叫做...
2024-12-05 01:16
【總結(jié)】⑥;⑦?x?xx?x?11?;⑧??(1)(2)???(3)vv復(fù)合函數(shù)的導(dǎo)數(shù)和函數(shù)的導(dǎo)數(shù)間的關(guān)系為,即y對(duì)x的導(dǎo)數(shù)等于y對(duì)u的導(dǎo)數(shù)與u對(duì)x的導(dǎo)數(shù)的乘積.解題步驟:分層—層
2025-05-13 14:34
【總結(jié)】高中導(dǎo)數(shù)與函數(shù)知識(shí)點(diǎn)總結(jié)歸納一、基本概念1.導(dǎo)數(shù)的定義:設(shè)是函數(shù)定義域的一點(diǎn),如果自變量在處有增量,則函數(shù)值也引起相應(yīng)的增量;比值稱為函數(shù)在點(diǎn)到之間的平均變化率;如果極限存在,則稱函數(shù)在點(diǎn)處可導(dǎo),并把這個(gè)極限叫做在處的導(dǎo)數(shù)。在點(diǎn)處的導(dǎo)數(shù)記作2導(dǎo)數(shù)的幾何意義:(求函數(shù)在某點(diǎn)處的切線方程)函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義就是曲線在點(diǎn)處的切線的斜率,也就是說,曲線在點(diǎn)P處的切
2025-04-04 05:08
【總結(jié)】高中數(shù)學(xué)必修1知識(shí)點(diǎn)第一章集合與函數(shù)概念〖〗集合【】集合的含義與表示(1)集合的概念集合中的元素具有確定性、互異性和無序性.(2)常用數(shù)集及其記法表示自然數(shù)集,或表示正整數(shù)集,表示整數(shù)集,表示有理數(shù)集,表示實(shí)數(shù)集.(3)集合與元素間的關(guān)系對(duì)象與集合的關(guān)系是,或者,兩者必居其一.(4)集合的表示法①自然語言法:用文字?jǐn)⑹?/span>
2025-07-23 07:49
【總結(jié)】高中數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)平面向量知識(shí)點(diǎn)歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長(zhǎng)度),記作||即向量的大小,記作||向量不能比較大小,但向量的模可以比較大小.②零向量:長(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0
2025-04-04 05:10
【總結(jié)】導(dǎo)數(shù)考試內(nèi)容:導(dǎo)數(shù)的背影.導(dǎo)數(shù)的概念.多項(xiàng)式函數(shù)的導(dǎo)數(shù).利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導(dǎo)數(shù)概念的某些實(shí)際背景.(2)理解導(dǎo)數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導(dǎo)數(shù)公式,會(huì)求多項(xiàng)式函數(shù)的導(dǎo)數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會(huì)用導(dǎo)數(shù)求多項(xiàng)式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最
2025-08-08 19:51
【總結(jié)】高中數(shù)學(xué)必修4平面向量知識(shí)點(diǎn)歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長(zhǎng)度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大?。诹阆蛄浚洪L(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的
2025-08-11 09:32
【總結(jié)】《必修五知識(shí)點(diǎn)總結(jié)》第一章:解三角形知識(shí)要點(diǎn)一、正弦定理和余弦定理1、正弦定理:在中,、、分別為角、、的對(duì)邊,,則有(為的外接圓的半徑)正弦定理的變形公式:①,,;②,,;③;2、余弦定理:在中,有,推論:,推論:
2025-04-04 05:12
【總結(jié)】必修五知識(shí)點(diǎn)總結(jié)《必修五知識(shí)點(diǎn)總結(jié)》第一章:解三角形知識(shí)要點(diǎn)一、正弦定理和余弦定理1、正弦定理:在中,、、分別為角、、的對(duì)邊,,則有(為的外接圓的半徑)2、正弦定理的變形公式:①,,;②,,;③;3、三角形面積公式:.4、余弦定理:在中,有,推論:
【總結(jié)】必修5知識(shí)點(diǎn)總結(jié)1、正弦定理:在中,、、分別為角、、的對(duì)邊,為的外接圓的半徑,則有.2、正弦定理的變形公式:①,,;②,,;③;④.(正弦定理主要用來解決兩類問題:1、已知兩邊和其中一邊所對(duì)的角,求其余的量。2、已知兩角和一邊,求其余的量。)⑤對(duì)于已知兩邊和其中一邊所對(duì)的角的題型要注意解的情況。(一解、兩解、無解三中情況)如:在三角形ABC中,已知a、b、A(
2025-08-08 19:31
【總結(jié)】必修五數(shù)學(xué)公式概念第一章解三角形正弦定理和余弦定理正弦定理1、正弦定理:在一個(gè)三角形中,各邊和它所對(duì)角的正弦的比相等,即.正弦定理推論:①(為三角形外接圓的半徑)②③④⑤2、解三角形的概念:一般地,我們把三角形的各個(gè)角即他們所對(duì)的邊叫做三角形的元素。任何一個(gè)三角形都有六個(gè)元素:,已知三角形的幾個(gè)元素求其他元素
【總結(jié)】高中數(shù)學(xué)知識(shí)點(diǎn)歸納高一(上)數(shù)學(xué)知識(shí)點(diǎn)歸納第一章集合與命題:集合的基本概念、空集、子集和真子集、集合的相等;集合的交、并、補(bǔ)運(yùn)算。四種命題形式、等價(jià)命題;充分條件與必要條件。:理解集合、空集的意義,會(huì)用列舉法和描述法表示集合;理解子集、真子集、集合相等等概
2025-04-04 05:13
【總結(jié)】高中數(shù)學(xué)必修(1)課本章節(jié)分析張趁第一章、集合與函數(shù)概念§.1集合教學(xué)目標(biāo):(1)通過實(shí)例,了解集合的含義,體會(huì)元素與集合的“屬于”關(guān)系;(2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;教學(xué)重點(diǎn):集合的基本概念與表示方法
2025-08-05 02:24
【總結(jié)】高一數(shù)學(xué)常用公式及結(jié)論必修1:一、集合1、含義與表示:(1)集合中元素的特征:確定性,互異性,無序性(2)集合的分類;有限集,無限集(3)集合的表示法:列舉法,描述法,圖示法2、集合間的關(guān)系:子集:對(duì)任意,都有,則稱A是B的子集。記作真子集:若A是B的子集,且在B中至少存在一個(gè)元素不屬于A,則A是B的真子集,
2025-04-04 05:09
【總結(jié)】第一章集合與函數(shù)概念一:集合的含義與表示1、集合的含義:集合為一些確定的、不同的東西的全體,人們能意識(shí)到這些東西,并且能判斷一個(gè)給定的東西是否屬于這個(gè)整體。把研究對(duì)象統(tǒng)稱為元素,把一些元素組成的總體叫集合,簡(jiǎn)稱為集。2、集合的中元素的三個(gè)特性:(1)元素的確定性:集合確定,則一元素是否屬于這個(gè)集合是確定的:屬于或
2025-04-04 05:06