【總結(jié)】本科畢業(yè)論文(設(shè)計(jì))(題目:決策樹分類算法在教學(xué)分析中的應(yīng)用)姓名:學(xué)號(hào):1142151204專業(yè):計(jì)算機(jī)科學(xué)與技術(shù)院系:信息工程學(xué)院指導(dǎo)老師:袁張露職稱學(xué)歷:助教/研究生完成時(shí)間:
2025-04-19 02:54
【總結(jié)】模式識(shí)別——貝葉斯決策理論馬勤勇一最簡(jiǎn)單的貝葉斯分類算法?還使用前面的例子:鱸魚(seabass)和鮭魚(salmon)。?使用一個(gè)特征亮度對(duì)這兩種魚進(jìn)行表示。?新來(lái)了一條魚特征是x(亮度),怎么根據(jù)特征x確定它到底是鱸魚ω1還是鮭魚ω2??已知數(shù)據(jù):鱸魚類標(biāo)號(hào)ω1,鮭魚類標(biāo)號(hào)ω2。鱸魚
2025-03-04 14:22
【總結(jié)】決策樹算法及應(yīng)用拓展?內(nèi)容簡(jiǎn)介:?概述?預(yù)備知識(shí)?決策樹生成(BuildingDecisionTree)?決策樹剪枝(PruningDecisionTree)?捕捉變化數(shù)據(jù)的挖掘方法?小結(jié)概述(一)?傳統(tǒng)挖掘方法的局限性?只重視從數(shù)據(jù)庫(kù)中提取規(guī)則,忽視了庫(kù)中數(shù)據(jù)的變化?挖掘
2025-03-09 11:31
2025-01-13 19:37
【總結(jié)】企業(yè)CRM系統(tǒng)中決策樹算法的應(yīng)用河北金融學(xué)院郭佳許明保定市科技局《基于數(shù)據(jù)挖掘的客戶關(guān)系管理系統(tǒng)應(yīng)用研究》09ZG009摘要:客戶資源決定企業(yè)的核心競(jìng)爭(zhēng)力,更多的關(guān)心自己的銷售群體,并與之建立良好的、長(zhǎng)期的客戶關(guān)系,提升客戶價(jià)值,對(duì)全面提升企業(yè)競(jìng)爭(zhēng)能力和盈利能力具有重要作用。本文以某企業(yè)銷售業(yè)績(jī)?yōu)閷?duì)象,利用決策樹分類算法,得到支持決策,從而挖掘出理想客戶。關(guān)鍵字:客戶關(guān)系管
2025-06-28 11:51
2025-01-27 01:11
【總結(jié)】決策樹決策樹簡(jiǎn)介決策樹算法A1,A2兩方案投資分別為450萬(wàn)和240萬(wàn),經(jīng)營(yíng)年限為5年,銷路好的概率為,銷路差的概率為,A1方案銷路好年、差年的損益值分別為300萬(wàn)和負(fù)60萬(wàn),A2方案分別為120萬(wàn)和30萬(wàn)。決策樹簡(jiǎn)介決策樹簡(jiǎn)介決策狀態(tài)狀態(tài)結(jié)結(jié)
2025-01-24 02:52
【總結(jié)】模式識(shí)別PatternClassification第四章:參數(shù)估計(jì)統(tǒng)計(jì)決策法參數(shù)估計(jì)?原理?對(duì)于絕大多數(shù)的識(shí)別問(wèn)題,類概率密度函數(shù)已知的條件并不成立,而通常只知類概率密度的函數(shù)形式,其參數(shù)未知。?參數(shù)估計(jì)法即是利用學(xué)習(xí)樣本來(lái)估計(jì)類概率密度參數(shù)的方法。3AppliedPattern
2025-01-06 10:15
【總結(jié)】ID3算法知識(shí)結(jié)構(gòu)決策樹基礎(chǔ)信息論基礎(chǔ)決策樹基礎(chǔ)?女孩家長(zhǎng)安排相親?女孩不厭其煩?女孩提出決策樹?父母篩選候選男士決策樹基礎(chǔ)有向無(wú)環(huán)二叉/多叉樹?父節(jié)點(diǎn):沒(méi)有子節(jié)點(diǎn)的節(jié)點(diǎn)?內(nèi)部節(jié)點(diǎn):有父節(jié)點(diǎn)、子節(jié)點(diǎn)的
2025-01-14 19:41
【總結(jié)】人工智能原理姓名:成軍學(xué)好:510061813論文題目:決策樹算法在商標(biāo)分類中的應(yīng)用中文摘要:決策樹一般都是自上而下的來(lái)生成的。每個(gè)決策或事件(即自然狀態(tài))都可能引出兩個(gè)或多個(gè)事件,導(dǎo)致不同的結(jié)果,把這種決策分支畫成圖形很像一棵樹的枝干。本文將使用決策樹算法對(duì)給定的商標(biāo)進(jìn)行分類。其中有三大類商標(biāo)數(shù)據(jù),每大類使用五分之三
2025-04-08 13:06
【總結(jié)】PCA與SVD相融合的人臉識(shí)別算法設(shè)計(jì)與系統(tǒng)實(shí)現(xiàn)摘要:主成分分析是基于K-L變換思想的優(yōu)秀線性分類算法之一,根據(jù)方差最大化原理,將信號(hào)在一組新的規(guī)范正交基下展開(kāi),其在人臉識(shí)別中具有重要應(yīng)用價(jià)值,所形成的算法稱為本征臉?lè)椒?,然而,由于該方法將圖像變換為本征臉空間的一點(diǎn),因此對(duì)光照,角度和平移等因素比較敏感。奇異值分解作為一種有效的
2025-06-06 08:34
【總結(jié)】模式識(shí)別原理實(shí)驗(yàn)報(bào)告基于貝葉斯方法對(duì)鳶尾花數(shù)據(jù)的分類一.貝葉斯原理貝葉斯準(zhǔn)則又稱為最大后驗(yàn)概率,用和分別表示兩個(gè)不同的類別,用和分別表示和各自的先驗(yàn)概率。用和分別表示和的類條件概率密度函數(shù)。則由全概率公式,可知觀測(cè)樣本出現(xiàn)的全概率密度由式1表示:
2025-07-22 16:30
【總結(jié)】風(fēng)險(xiǎn)型決策?最大概率法、收益期望值法、決策樹法★決策樹法?將損益期望值法中的各個(gè)方案的情況用一個(gè)概率樹來(lái)表示,就形成了決策樹。它是模擬樹木生長(zhǎng)的過(guò)程,從出發(fā)點(diǎn)開(kāi)始不斷分枝來(lái)表示所分析問(wèn)題的各種發(fā)展可能性,并以各分枝的損益期望值中的最大者作為選擇的依據(jù)。?決策樹的畫法、決策樹的例子?例題8、例題9、例題10決
2025-01-13 19:35
【總結(jié)】決策樹第十組:郭浩韓學(xué)成何珺何軍黃安迪§數(shù)據(jù)分類介紹分類是數(shù)據(jù)挖掘的一個(gè)重要課題,它的目的是:構(gòu)造一個(gè)分類函數(shù)或分類模型,該模型能把數(shù)據(jù)庫(kù)中的數(shù)據(jù)項(xiàng)映射到給定類別中的某一個(gè)。數(shù)據(jù)分類的過(guò)程一般來(lái)說(shuō)主要包含兩個(gè)步驟
【總結(jié)】決策樹技術(shù)DecisionTrees組員:賈小彥鄧蓓蓓戴維內(nèi)容提要?簡(jiǎn)介?決策樹基本概念?決策樹的優(yōu)缺點(diǎn)?經(jīng)典算法簡(jiǎn)介?決策樹和決策規(guī)則是解決實(shí)際應(yīng)用中分類問(wèn)題的數(shù)據(jù)挖掘方法。?一般來(lái)說(shuō),分類是把數(shù)據(jù)項(xiàng)映射到其中一個(gè)事先定義的類中的這樣一個(gè)學(xué)習(xí)函數(shù)的過(guò)程。由一組輸入的屬性值向量(
2025-01-12 21:57