【正文】
這種相對較新的結(jié)構(gòu)方法的利用正在處于不斷發(fā)展之中。另一種更常用的方法是將鋼筋置于與成品構(gòu)件外形相符的模板底部 ,然后在鋼筋周圍澆注混凝土。 預(yù)應(yīng)力混凝土是鋼筋混凝土的一種改良方式。多年來 ,傳統(tǒng)的連接方法是鉚接。它們已經(jīng)變成能夠抵擋風(fēng)雨并進行采光的幕墻了。 結(jié)構(gòu)鋼和混凝土的使用是傳統(tǒng)的施工方式產(chǎn)生的主要變化。因此它們可以在拉力與壓力同時存在的條件下共同工作。各 成分含量的不同 , 拌制出的混凝土強度和重量也不同。例如 ,鋼材在應(yīng)力不斷變化時所表現(xiàn)出的疲勞強度有所見減小的傾向。鋼材 (從根本上說 ,是以鐵為主要成分并含有少量碳元素的合金 ),直到出現(xiàn)能夠限制其特殊用途 (如制造刀 刃 )的費勞力的鑄造方法 ,才被鑄造出來。 磚和磚之間是由砂漿或者焦油狀的瀝青或其它粘合物粘結(jié)在一起。也就是說,主要分體系的性能只須做到一定深度,需要驗證他們的基本形式和相互關(guān)系是協(xié)調(diào)一致的。如果第一階段和第二階段的設(shè)計做的深入,那么在最初兩個階段所得到的總體結(jié)論和最后階段的細節(jié)的重新設(shè)計不再是問題。這是工作重點將再次轉(zhuǎn)移,進入細部設(shè)計。這樣就可以依據(jù)全局設(shè)計方案,確定并解決各分體系的相互影響以及設(shè)計難題。這就要求建筑師或者過問工程是能夠從主要分 體系之間的關(guān)系而不是從構(gòu)建細節(jié)去構(gòu)思總體結(jié)構(gòu)方案。為實現(xiàn)這些,建筑師必須注意場地各部分的基本使用,空間組織,并應(yīng)用象征手法確定其具體形式。這是一種復(fù)雜的挑戰(zhàn),為適應(yīng)這一挑戰(zhàn),建筑師需要有一個分階段的設(shè)計過程,其至少要分三個“反饋”考慮階段:方案階段,初步設(shè)計階段和施工圖設(shè)計階段。 these preliminarylevel decisions may also result in feedback that calls for refinement or even major change in schematic concepts. When the designer and the client are satisfied with the feasibility of a design proposal at the preliminary level, it means that the basic problems of overall design are solved and details are not likely to produce major change .The focus shifts again ,and the design process moves into the final level .At this stage the emphasis will be on the detailed development of all subsystem specifics . Here the role of specialists from various fields, including structural engineering, is much larger, since all detail of the preliminary design must be worked out. Decisions made at this level may produce feedback into Level II that will result in changes. However, if Levels I and II are handled with insight, the relationship between the overall decisions, made at the schematic and preliminary levels, and the specifics of the final level should be such that gross redesign is not in question, Rather, the entire process should be one of moving in an evolutionary fashion from creation and refinement (or modification) of the more general properties of a totalsystem design concept, to the fleshing out of requisite elements and details. To summarize: At Level I, the architect must first establish, in conceptual terms, the overall spaceform feasibility of basic schematic options. At this stage, collaboration with specialists can be helpful, but only if in the form of overall thinking. At Level II, the architect must be able to identify the major subsystem requirements implied by the scheme and substantial their interactive feasibility by approximating key ponent properties .That is, the properties of major subsystems need be worked out only in sufficient depth to very the inherent patibility of their basic formrelated and behavioral interaction . This will mean a some