【正文】
? 電池的有效功率因電 池的狀態(tài)而異。如果電池的有效功率足夠大,電動(dòng)機(jī)輸出地有效扭矩幾乎不再限制電動(dòng)機(jī)的扭矩輸出。發(fā)電機(jī)的輸出功率和電池供應(yīng)的有效功率之和是可以被電動(dòng)機(jī)利用的功率。發(fā)電機(jī)輸入轉(zhuǎn)矩由 PID 控制確定。如果所需的總功率超過預(yù)定值,它將成為所需的發(fā)動(dòng)力功率。輸出參數(shù)有所需發(fā)動(dòng)機(jī)功率、發(fā)電機(jī)輸入扭矩、電動(dòng)機(jī)輸出扭矩。所需的項(xiàng)目為實(shí)例時(shí)選擇了最小的發(fā)動(dòng)機(jī)功率,換句話說,如果發(fā)動(dòng)機(jī)做了更改則每個(gè)項(xiàng)目都要進(jìn)行相應(yīng)的更改。如果將可能發(fā)生的損失考慮在內(nèi)的話,電池需要提供 20kw 的功率。 根據(jù)式( 2),從發(fā)動(dòng)機(jī)傳輸傳輸?shù)呐ぞ乜梢酝ㄟ^下面計(jì)算獲得: 因此,電動(dòng)機(jī)必須能夠提供 300Nm 的最大扭矩。 . 發(fā)電機(jī)最大扭矩 如第二節(jié)所述,發(fā)動(dòng)機(jī)最高轉(zhuǎn)速為 4000r/min,要達(dá)到這一轉(zhuǎn)速是的最大扭矩從發(fā)動(dòng)機(jī) 獲得的最大扭矩如下: 根據(jù)式( 3),作用在發(fā)電機(jī)上的最大扭矩如下: 這是在不超速行駛的情況下驅(qū)動(dòng)發(fā)電機(jī)運(yùn)轉(zhuǎn)的扭矩。圖 .2 所示基于本田混合動(dòng)力系統(tǒng)的車輛行駛阻力對(duì)車輛動(dòng)力的規(guī)格要求。相反,他很大程度上受限制于車輛的總體布置預(yù)留的設(shè)計(jì)空間。 汽車的動(dòng)力性能由通過的道路條件(如斜坡)、車速限制、所需超車速度等來確定。這種電池的優(yōu)點(diǎn)是功率密度高、壽命長(zhǎng)。 . 發(fā)動(dòng)機(jī) 豐田混合動(dòng)力系統(tǒng)采用專門設(shè)計(jì)的排量為 的汽油發(fā)動(dòng)機(jī)。 驅(qū)動(dòng)軸通過減速器連接到齒圈,因此,車連行駛速度與電機(jī)轉(zhuǎn)速成正比。因此,發(fā)動(dòng)機(jī)的動(dòng)力被分配到發(fā)電機(jī)和驅(qū)動(dòng)輪。 2. 豐田混合動(dòng)力系統(tǒng) 如圖 .1 所示,豐田混合動(dòng)力系統(tǒng)由混合動(dòng)力傳動(dòng)裝置、發(fā)動(dòng)機(jī)和電池組成。換句話說,每個(gè)組件必須在自己的能力限制范圍內(nèi)生成驅(qū)動(dòng)力。由于豐田混合動(dòng)力 系統(tǒng)對(duì)發(fā)動(dòng)機(jī)操作和排放的不斷優(yōu)化,因此可以取得更好的燃油經(jīng)濟(jì)性。從當(dāng)前使用的技術(shù)和汽油站檢測(cè)服務(wù)設(shè)施,結(jié)合當(dāng)前已安裝的基礎(chǔ)設(shè)施,以汽油發(fā)動(dòng)機(jī)和電動(dòng)機(jī)驅(qū)動(dòng)的混合動(dòng)力汽車是最現(xiàn)實(shí)的解決方案之一。 1. 簡(jiǎn)介 近年來,內(nèi)燃機(jī)車輛作為一種交通工具發(fā)揮了越來越重要的作用,為社會(huì)的發(fā)展做出了很多貢獻(xiàn)。因此,有必要對(duì) 各個(gè)部件進(jìn)行平衡設(shè)計(jì)。Drive force control of a parallelseries hybrid system Abstract Since each ponent of a hybrid system has its own limit of performance, the vehicle power depends on the weakest ponent. So it is necessary to design the balance of the ponents. The vehicle must be controlled to operate within the performance range of all the ponents. We designed the specifications of each ponent backward from the required drive force. In this paper we describe a control method for the motor torque to avoid damage to the battery, when the battery is at a low state of charge. Society of Automotive Engineers of Japan, Inc. and Elsevier Science . All rights reserved. 1. Introduction In recent years, vehicles with internal bustion engines have increasingly played an important role as a means of transportation, and are contributing much to the development of society. However, vehicle emissions contribute to air pollution and possibly even global warming, which require effective countermeasures. Various developments are being made to reduce these emissions, but no further large improvements can be expected from merely improving the current engines and transmissions. Thus, great expectations are being placed on the development of electric, hybrid and natural gasdriven vehicles. Judging from currently applicable technologies, and the currently installed infrastructure of gasoline stations, inspection and service facilities, the hybrid vehicle, driven by the bination of gasoline engine and electric motor, is considered to be one of the most realistic solutions. Generally speaking, hybrid systems are classified as series or parallel systems. At Toyota, we have developed the Toyota Hybrid System (hereinafter referred to as the THS) by bining the advantages of both systems. In this sense the THS could be classified as a parallelseries type of system. Since the THS constantly optimizes engine operation, emissions are cleaner and better fuel economy can be achieved. During braking, Kiic energy is recovered by the motor, thereby reducing fuel consumption and subsequent CO2 emissions. Emissions and fuel economy are greatly improved by using the THS for the powe