freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx-中考數(shù)學(xué)(二次函數(shù)提高練習(xí)題)壓軸題訓(xùn)練含詳細答案-wenkub.com

2025-04-03 00:12 本頁面
   

【正文】 點C坐標(biāo)為(,).點睛:本題考查綜合考查用待定系數(shù)法求二次函數(shù)解析式,拋物線的增減性.解答問題時注意線段最值問題的轉(zhuǎn)化方法.15.如圖1,拋物線與軸交于點和點,與軸交于點,拋物線的頂點為軸于點.將拋物線平移后得到頂點為且對稱軸為直的拋物線.(1)求拋物線的解析式;(2)如圖2,在直線上是否存在點,使是等腰三角形?若存在,請求出所有點的坐標(biāo):若不存在,請說明理由;(3)點為拋物線上一動點,過點作軸的平行線交拋物線于點,點關(guān)于直線的對稱點為,若以為頂點的三角形與全等,求直線的解析式.【答案】(1)拋物線的解析式為;(2)點的坐標(biāo)為,;(3)的解析式為或.【解析】分析:(1)把和代入求出a、c的值,進而求出y1,再根據(jù)平移得出y2即可;(2)拋物線的對稱軸為,設(shè),已知,過點作軸于,分三種情況時行討論等腰三角形的底和腰,得到關(guān)于t的方程,解方程即可;(3)設(shè),則,根據(jù)對稱性得,分點在直線的左側(cè)或右側(cè)時,結(jié)合以構(gòu)成的三角形與全等求解即可.詳解:(1)由題意知,解得, 所以,拋物線y的解析式為;因為拋物線平移后得到拋物線,且頂點為,所以拋物線的解析式為,即: ;(2)拋物線的對稱軸為,設(shè),已知,過點作軸于,則 , ,當(dāng)時,即,解得或;當(dāng)時,得,無解;當(dāng)時,得,解得。∠BOF=30176?!郃E=ME∵y=﹣x2+3x+4=0時,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,xM=4﹣t,ME=y(tǒng)M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,則∠PMD=∠PDM如圖,記AM與y軸交點為F,過點D作DG⊥y軸于點G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),設(shè)直線AM解析式為y=ax+m∴ 解得: ,∴直線AM:∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:,∴,∵∠CGD=90176。①若MD=MP,則∠MDP=∠MPD=45176。∴Rt△BEP中, ∴,∴ ∵點M在拋物線上∴,∴ ,∵PN⊥y軸于點N∴∠PNO=∠NOE=∠PEO=90176。不合題意;②若DM=DP,則∠DMP=∠MPD=45176。時,P(2m+3,0)∵點P在拋物線上,∴,解得:m3=﹣3(舍去),m4=﹣1,此時點P的坐標(biāo)為(1,0);③當(dāng)∠APF=90176。、∠AFP=90176。(2,4),B39。4,即點C坐標(biāo)為:(4,0)或(﹣4,0);②當(dāng)AB=BC時,則:(5﹣m)2+92=132,解得:m=5,即:點C坐標(biāo)為(5,0)或(5﹣2,0);③當(dāng)AC=BC時,則:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,則點C坐標(biāo)為(,0).綜上所述:存在,點C的坐標(biāo)為:(177。20202021 中考數(shù)學(xué)(二次函數(shù)提高練習(xí)題)壓軸題訓(xùn)練含詳細答案一、二次函數(shù)1.已知二次函數(shù)的圖象以A(﹣1,4)為頂點,且過點B(2,﹣5)(1)求該函數(shù)的關(guān)系式;(2)求該函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo);(3)將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過原點時,A、B兩點隨圖象移至A′、B′,求△O A′B′的面積.【答案】(1)y=﹣x2﹣2x+3;(2)拋物線與x軸的交點為:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了拋物線的頂點坐標(biāo),可用頂點式設(shè)該二次函數(shù)的解析式,然后將B點坐標(biāo)代入,即可求出二次函數(shù)的解析式;(2)根據(jù)函數(shù)解析式,令x=0,可求得拋物線與y軸的交點坐標(biāo);令y=0,可求得拋物線與x軸交點坐標(biāo);(3)由(2)可知:拋物線與x軸的交點分別在原點兩側(cè),由此可求出當(dāng)拋物線與x軸負半軸的交點平移到原點時,拋物線平移的單位,由此可求出A′、B′的坐標(biāo).由于△OA′B′不規(guī)則,可用面積割補法求出△OA′B′的面積.【詳解】(1)設(shè)拋物線頂點式y(tǒng)=a(x+1)2+4,將B(2,﹣5)代入得:a=﹣1,∴該函數(shù)的解析式為:y=﹣(x+1)2+4=﹣x2﹣2x+3;(2)令x=0,得y=3,因此拋物線與y軸的交點為:(0,3),令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,即拋物線與x軸的交點為:(﹣3,0),(1,0);(3)設(shè)拋物線與x軸的交點為M、N(M在N的左側(cè)),由(2)知:M(﹣3,0),N(1,0),當(dāng)函數(shù)圖象向右平移經(jīng)過原點時,M與O重合,因此拋物線向右平移了3個單位,故A39。4,0)或(5,0)或(,0);(3)過點P作y軸的平行線交AB于點H.設(shè)直線AB的表達式為y=kx﹣3,把點B坐標(biāo)代入上式,9=5k﹣3,則k,故函數(shù)的表達式為:yx﹣3,設(shè)點P坐標(biāo)為(m,m2m﹣3),則點H坐標(biāo)為(m,m﹣3),S△PAB?PH?xB(m2+12m)=-6m2+30m=,當(dāng)m=時,S△PAB取得最大值為:.答:△PAB的面積最大值為.【點睛】本題是二次函數(shù)綜合題.主要考查了二次函數(shù)的解析式的求法和與幾何圖形結(jié)合的綜合能力的培養(yǎng).要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標(biāo)的意義表示線段的長度,從而求出線段之間的關(guān)系.4.如圖①,在平面直角坐標(biāo)系xOy 中,拋物線y=ax2+bx+3經(jīng)過點A(1,0) 、B(3,0) 兩點,且與y軸交于點C.(1)求拋物線的表達式;(2)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P、 Q兩點(點P在點Q的左側(cè)),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP、DQ.①若點P的橫坐標(biāo)為,求△DPQ面積的最大值,并求此時點D 的坐標(biāo);②直尺在平移過程中,△DPQ面積是否有最大值?若有,求出面積的最大值;若沒有,請說明理由.【答案】(1)拋物線y=x2+2x+3;(2)①點D( );②△PQD面積的最大值為8【解析】分析:(1)根據(jù)點A、B的坐標(biāo),利用待定系數(shù)法即可求出拋物線的表達式;(2)(I)由點P的橫坐標(biāo)可得出點P、Q的坐標(biāo),利用待定系數(shù)法可求出直線PQ的表達式,過點D作DE∥y軸交直線PQ于點E,設(shè)點D的坐標(biāo)為(x,x2+2x+3),則點E的坐標(biāo)為(x,x+),進而即可得出DE的長度,利用三角形的面積公式可得出S△DPQ=2x2+6x+,再利用二次函數(shù)的性質(zhì)即可解決最值問題;(II)假設(shè)存在,設(shè)點P的橫坐標(biāo)為t,則點Q的橫坐標(biāo)為4+t,進而可得出點P、Q的坐標(biāo),利用待定系數(shù)法可求出直線PQ的表達式,設(shè)點D的坐標(biāo)為(x,x2+2x+3),則點E的坐標(biāo)為(x,2(t+1)x+t2+4t+3),進而即可得出DE的長度,利用三角形的面積公式可得出S△DPQ=2x2+4(t+2)x2t28t,再利用二次函數(shù)的性質(zhì)即可解決最值問題.詳解:(1)將A(1,0)、B(3,0)代入y=ax2+bx+3,得:,解得:,∴拋物線的表達式為y=x2+2x+3.(2)(I)當(dāng)點P的橫坐標(biāo)為時,點Q的橫坐標(biāo)為,∴此時點P的坐標(biāo)為(,),點Q的坐標(biāo)為(,).設(shè)直線PQ的表達式為y=mx+n,將P(,)、Q(,)代入y=mx+n,得:,解得:,∴直線PQ的表達式為y=x+.如圖②,過點D作DE∥y軸交直線PQ于點E,設(shè)點D的坐標(biāo)為(x,x2+2x+3),則點E的坐標(biāo)為(x,x+),∴DE=x2+2x+3(x+)=x2+3x+,∴S△DPQ=DE?(xQxP)=2x2+6x+=2(x)2+8.∵2<0,
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1